VMStools: Open-source software for the processing, analysis and visualization of fisheries logbook and VMS data

Hintzen, Niels T.; Bastardie, Francois; Beare, Doug; Piet, Gerjan J.; Ulrich, Clara; Deporte, Nicolas; Egekvist, Josefine; Degel, Henrik

Published in:
Fisheries Research

Link to article, DOI:
10.1016/j.fishres.2011.11.007

Publication date:
2012

Citation (APA):
VMStools: Open-source software for the processing, analysis and visualisation of fisheries logbook and VMS data

Niels T. Hintzen1*, Francois Bastardie2, Doug Beare1, Gerjan Piet1, Clara Ulrich2, Nicolas Deporte3, Josefine Egkvist2, Henrik Degel2

1IMARES, part of Wageningen UR, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
2DTU-Aqua, Technical University of Denmark, National Institute of Aquatic Resources, Charlottenlund Castle, DK-2920 Charlottenlund, Denmark
3IFREMER, French Research Institute for Exploration of the Sea, Brest, STH, BP 70, 29280 France

ABSTRACT

Vmstools is a package of open-source software, build using the freeware environment R, specifically developed for the processing, analysis and visualisation of landings (logbooks) and vessel location data (VMS) from commercial fisheries. Analyses start with standardized data formats for logbook (EFLALO) and VMS (TACSAT), enabling users to conduct a variety of analyses using generic algorithms. Embedded functionality handles erroneous data point detection and removal, métier identification through the use of clustering techniques, linking logbook and VMS data together in order to distinguish fishing from other activities, provide high-resolution maps of both fishing effort and landings, interpolate vessel tracks, calculate indicators of fishing impact as listed under the Data Collection Framework at different spatio-temporal scales. Finally data can be transformed into other existing formats, for example to populate regional databases like FishFrame. This paper describes workflow examples of these features while online material allows a head start to perform these analyses. This software incorporates state-of-the-art VMS and logbook analysing methods standardizing the process towards obtaining pan-European, or even worldwide indicators of fishing distribution and impact as required for spatial planning.

Keywords: Area based management, fishing impact, indicators, marine spatial planning, métier analyses

*Corresponding author: tel: +31 317 489070; e-mail: Niels.Hintzen@wur.nl

Article first published online: January 2013

Please note that this is an author-produced PostPrint of the final peer-review corrected article accepted for publication. The definitive publisher-authenticated version can be accesses here:
http://dx.doi.org/10.1016/j.fishres.2011.11.007 © 2013 Elsevier
vmstools: open-source software for the processing, analysis and visualization of fisheries logbook and VMS data

Niels T. Hintzen¹*, Francois Bastardie², Doug Beare¹, Gerjan Piet¹, Clara Ulrich², Nicolas Deporte³, Josefine Egekvist², Henrik Degel²

¹IMARES, part of Wageningen UR, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
²DTU-Aqua, Technical University of Denmark, National Institute of Aquatic Resources, Charlottenlund Castle, DK-2920 Charlottenlund, Denmark
³IFREMER, French Research Institute for Exploration of the Sea, Brest, STH, BP 70, 29280 Plouzané, France

*Corresponding author: tel: +31 317 489070; fax: +31 317 487326; e-mail: Niels.Hintzen@wur.nl

Abstract

Vmstools is a package of open-source software, build using the freeware environment R, specifically developed for the processing, analysis and visualisation of landings (logbooks) and vessel location data (VMS) from commercial fisheries. Analyses start with standardised data formats for logbook (EFLALO) and VMS (TACSAT), enabling users to conduct a variety of analyses using generic algorithms. Embedded functionality handles erroneous data point detection and removal, métier identification through the use of clustering techniques, linking logbook and VMS data together in order to distinguish fishing from other activities, provide high-resolution maps of both fishing effort and - landings, interpolate vessel tracks, calculate indicators of fishing impact as listed under the Data Collection Framework at different spatio-temporal scales. Finally data can be transformed into other existing formats, for example to populate regional databases like FishFrame. This paper describes workflow examples of these features while online material allows a head start to perform these analyses. This software incorporates state-of-the art VMS and logbook analysing methods standardizing the process towards
obtaining pan-European, or even worldwide indicators of fishing distribution and impact as required for spatial planning.

Keywords

Area based management, fishing impact, indicators, marine spatial planning, métier analyses

1. Introduction

Growing pressures by various human activities on the marine environment and international commitments to the conservation of biodiversity or seafloor integrity (CEC, 2007) have led to increased interest in marine spatial planning and in the tools required for an assessment of the impact of these pressures (Douvere and Ehler, 2009). Fishing is considered, given its widespread occurrence, to probably be the main human activity impacting the seafloor (Eastwood, 2007; Kaiser et al., 2006). Vessel Monitoring by Satellite (VMS) system data on the spatial distribution of fisheries have been collected from 2000 onwards (EC, 2002; Piet et al., 2007), originally introduced for control purposes. However, no regional assessments on the spatial impact of international fishing activities on the seafloor have yet been conducted at appropriate scales (Piet and Quirijns, 2009). An important reason relate to concerns of confidentiality and commercial sensitivity over the use of raw VMS data, as points identify exact vessel positions. However, aggregating VMS into métiers following strict protocols should overcome this and thereby facilitating the wider exchange of data in Europe (Lee et al., 2010).

However, defining métiers is in itself a difficult issue, as identifying distinct and well-defined types of fishing activities can be executed using a variety of criteria and methods, often including a part of subjectivity (ICES, 2003). And in spite of intense scientific activity in this field over the last two decades, no standardised approach for defining métiers across regions and countries has yet fully emerged (Ulrich et al., 2009). Time is pressing to deal with these technical issues, as the implementation of an ecosystem approach to fisheries management and part of the revised Common Fisheries
Policy, require a move towards fleet and area-based management (EC, 2008). These advances may be used to direct marine spatial planning and to reduce the pressure by human activities on the marine environment.

In European Union (EU) member states, spatial fishing information can be obtained from two main sources: the logbooks and the VMS data (EC, 2002). (i) Logbooks are the responsibility of the skipper of each vessel and have been mandatory on all commercial fishing vessels larger than 10 meters cruising in EU waters, since 1985, or when landings exceed 50kg (EC, 1993; Long and Curran, 2000). Logbook data, here referred to as the combined dataset of the fleet register, logbook data filled out by skippers and sale slips, provide information on aspects of the fishing operations (gear types used, mesh size, landings) and the physical characteristics of each vessel (vessel size, engine power). In their logbooks the fishermen must also declare the location (usually at the ICES statistical rectangle level, 1° longitude, 0.5° latitude) and the date where each landing was taken. (ii) The VMS regulations (mandatory on vessels >24m in length from 2000-2004; and >15m from 2005-2011), first introduced in January 2000, require the regular submission (via satellite) of the exact locations (longitude, latitude, speed and heading) of each vessel to a centralized database. Typically the intervals between positions or pings are one or two hours.

In the past decade, VMS analyses have mainly focused on mapping fishing effort distribution (see a review in Lee et al., 2010) and on refining the methodology for describing fishing tracks or activity (Mills et al., 2007; Hintzen et al., 2010; Vermard et al., 2010). Some recent studies have explored methods for allocating logbook catches to VMS positions (Bastardie et al., 2010b; Gerritsen and Lordan, 2011). Hence, logbook and VMS data are complementary and the coupling of logbook and VMS data has already proven powerful, also for describing the spatial distribution of marine biota habitat at a much finer spatial or temporal resolution (Bastardie et al., 2010b; Eastwood, 2007; Fock, 2008; Gerritsen and Lordan, 2011; Hintzen et al., 2010; Lee et al., 2010; Mills et al.,
In most of the studies listed above, however, the data have been processed with *ad hoc* tools, making the analyses difficult to repeat even if the methodology is well described. The use of pre-defined (standardized) data formats in combination with standard scripts would allow various operators to perform identical analyses on similar data sources (Cagnacci and Urbano, 2008), and would therefore provide opportunities to accelerate our understanding of the marine habitat and its use (Reichman et al., 2011; Kranstauber et al. 2011). Ecopath with Ecosim (Christensen and Walters, 2004), as a standardized framework for example, has revolutionised ecosystem modelling, and its applications are found all over the world. Likewise, **FLR** (Kell et al., 2007) which is also an R ‘add-on’ package (R Development Core Team, 2008) has proved to be extremely useful for standardising stock assessments and management strategy evaluations (Kraak et al., 2008; Pastoors et al., 2007; Sainsbury et al., 2000). In this paper we demonstrate how the use of the **vmstools** package to jointly analyse VMS and logbook data improves our understanding of the marine habitat and its usage by fisheries.

Vmstools uses two standardized data formats, EFLALO (EU logbook data) and TACSAT (the VMS positions). These formats build on work done and agreements made during previous EU funded scientific projects such as TECTAC, CAFÉ and AFRAME (see Appendix A) and are well known within the International Council for the Exploration of the Sea (ICES) community. Once the data have been imported into R, a series of functions linked by scripts enable a range of tasks to be completed in a single software environment. Métiers, for example, can be identified objectively from logbook landings species compositions using multivariate and clustering techniques; fishing activity can be distinguished from other activities (i.e. vessels in harbour or steaming); logbook and VMS data can be linked (Bastardie et al., 2010b) and individual vessel tracks can be interpolated both linearly and non-linearly using Hermite spline functions (Hintzen et al., 2010). The package can furthermore be used to explore the effect of different spatial
(grid size) and temporal aggregations (monthly, quarterly, annually) which can be extremely important when determining fishing impact and its indicators (Piet and Quirijns, 2009), of which three of those listed under the Data Collection Framework are embedded within the package too.

2. Material & Methods

This software was developed during the EU funded project ‘Development of tools for logbook and VMS data analysis (MARE/2008/10 lot 2)’. The open-source statistical computing environment, R, was selected because it is free, is used widely in the fisheries scientific community, and already incorporates a range of useful add-on packages capable of dealing with spatial data. A public repository has been created for hosting the development of the package, from which the latest version of vmstools can also be downloaded (http://code.google.com/p/vmstools/). Each program submitted to the repository must have a manual describing its use and, furthermore, must be designed to use TACSAT and EFLALO formats. (Note: from here on ‘tacsat’ will be used as a reference to the formatted VMS dataset while ‘eflalo’ is used as a reference to the formatted logbook data). Anyone with an interest in analysing such data can get involved by contacting the authors. Illustrations of the use of the tools (for example scripts, see also Appendix B) are also available on the repository. These scripts describe possible ways the R functions can be combined when analysing and coupling VMS and logbook data. The most salient points are described below (references to R functions currently incorporated within the package are given in italics).

2.1 Data

VMS and logbook processing using vmstools first requires eflalo and tacsat data to be created in the correct format. Each of these datasets has a pre-defined structure (see Appendix A) with certain mandatory columns. Data are imported into R from csv files (comma separated values) using readEflalo and readTacsat, which ensures that each column of data is in the correct format (internal check by formatEflalo and formatTacsat), e.g. date, character or number. To illustrate these datasets the Dutch fishing industry
and Ministry kindly gave the authors the permission to incorporate subsets of raw logbook and VMS data directly into the `vmstools` package. For confidentiality purposes, these data have been disguised, and noise has been added to the recorded vessel positions. These data are now thus an embedded component of the package, allowing potential users to test and demonstrate the software. These example datasets are also used to illustrate the software functioning within this paper.

2.2 Cleaning the data

In many instances, both VMS and EU logbook data contain erroneous entries. It is common to find vessel positions on land, implausibly high speeds, headings outside a compass range, and duplicate records. As advised by ICES (ICES, 2010), these errors should be removed or flagged. In addition, vessel positions lying either in harbours, or very close to harbours should be identified. The `vmstools` package distinguishes such records using standard GIS-type point-in-polygon calculations. Functions such as, `sortTacsat`, `pointOnLand` and `pointInHarbour` are examples of how this process is facilitated, supported by command line access to extensive harbour position lists and European coastline shapefiles.

Within this exercise, positions in the tacsat file which were outside longitudinal or latitudinal ranges (latitude > 90 or latitude < -90, longitude < -180 or longitude > 180), or had speed records of more than 20nmh\(^{-1}\) were removed. After filtering out duplicate records, points in harbour were removed (`pointInHarbour`), as were points on land (`pointOnLand`, see figure 1, table 1). In addition to ‘true’ duplicates, the tacsat file was also filtered for pseudo-duplicate positions where records with intervals of less than 5 minutes were removed. Spurious mesh sizes (> 150mm in the example dataset) in the eflalo dataset were also removed, while landings that were larger than approximately 30x any other landing recorded of that species were flagged. In addition, non-unique trip IDs were removed where a trip ID consisted of the combination of vessel ID, trip number, haul and ICES statistical rectangle of the landing.

2.3 Métier Identification
Fishing operations and fishing trips showing similar patterns need to be grouped by métiers according to the Data Collection Framework for the European Union (DCF, EC 2008). The DCF has defined métiers according to a hierarchical structure using six nested levels: Level 1- Activity (fishing/non fishing), Level 2- Gear class (e.g. trawls, dredges), Level 3- Gear group (e.g. bottom trawls, pelagic trawls), Level 4- Gear type (e.g. Bottom otter trawl (OTB), Bottom pair trawl (PTB)), Level 5- Target assemblage based on main species type (e.g. Demersal fish, Crustaceans), Level 6- Mesh size and other selective devices. Because logbooks do not contain the information on the assemblage of targeted species as required by the definition of the métier at the level 5, a number of methods have been used in the past to identify these, typically using a variety of statistical analyses on landings profiles from logbooks data (see also the reviews by Marchal, 2008 and Ulrich et al., 2009). In order to implement and compare some of the most commonly used of these methods in a generic and objective framework, a workflow has been set up to apply multivariate and clustering analyses to the logbook landings composition, in order to deduce it for each fishing operation (logbook event). The details of the methodology included in the present vmstools library are the subject of another paper (Deorte et al., in prep) and only the salient points need to be recapitulated here. The steps undertaken can be summarized as follows:

(i) First it is necessary to identify the most valuable species in the logbooks so the size of the dataset can be rendered manageable (selectMainSpecies and extractTableMainSpecies). (ii) Secondly the total inertia of the dataset must be reduced by applying the routines getTableAfterPCA which runs principal component analysis (PCA) followed by a selection of clustering methods: Hierarchical Agglomerative Classification (HAC, Hartigan, 1975), K-Means (Hartigan and Wong, 1979) or Clustering LARge Applications (CLARA) algorithm (Kaufman and Rousseeuw, 1990), getMetierClusters. The PCA aims to make the clustering process easier by reducing the amount of information comprised in the dataset to its substantial part only. Clusters group similar logbook events and are characterized by specific assemblages of different species (which are conveniently referred to as Level7, by opposition to the pre-defined Level 5 assemblages based on species type). (iii) Thirdly, a conversion of métier at this Level 7 to métier DCF...
Level 5 categories is executed using *compareToOrdination*. This latter function also permits the comparison of these results with those obtained using alternative simple ordination methods. (iv) Finally any newly derived logbook data can be allocated into the pre-defined categories or métiers using a discriminant analysis embedded in the *predictMetier* function. To ease the whole workflow, all these sequential steps (except for the last one) have also been pooled into one single routine (*getEflaloMetierLevel7*), which reads an EFLALO dataset in and returns it together with a métier definition both at Level 5 and at Level 7.

The first step of the métier identification on the example eflalo dataset consists of determining the main species, realized using the *selectMainSpecies* function. This function encompasses three methods: (i) species selection by HAC clustering, (ii) species selection by their proportion of the total catch, and (iii) species selection by their proportion of the catch of at least one logbook event. Each method gives a set of species and returns a set of main species to be included in the métier identification. After defining the main species, the original input dataset is subset to only these species (*extractTableMainSpecies*). PCA analyses are executed to reduce the dimension of the data with the function *getTableAfterPCA*. The “70% of the initial inertia” criterion was used to determine the number of axis to retain. The CLARA clustering algorithm was finally used to define the clusters.

2.4 Linking tacsat and eflalo data

By linking tacsat and eflalo data investigators can potentially explore the spatial distribution of fishing effort and landings in much greater detail than was hitherto possible (Fock, 2008; Gerritsen and Lordan, 2011; Hintzen et al., 2010; Lee et al., 2010; Piet et al., 2007). Linking tacsat and eflalo data implies that individual tacsat pings can be assigned to a particular trip as given in the eflalo dataset. This step is particularly important, as all subsequent analyses depend on the success of the linking. Linking both sources of information requires identifying common vessels identifiers (ID), and date and time limits that define the start and end of a trip or logbook event. The simplest
approach is to select the VMS positions that occurred between the departure and arrival dates for each trip described in the logbook data, and to assign unique trip identifiers to them. Sometimes, however, it is not possible to match tacsat records with every trip identified in the eflalo data, and in these cases the non-matching observations can be flagged with a ‘0’ (**mergeEflalo2Tacsat**). Another, more sophisticated method available in the **vmstools** package (see Bastardie et al., 2010b), links trips by their midpoint (**mergeEflalo2Pings**).

2.5 Fishing activity

When investigating the behaviour of fishers or analysing, e.g. the impact of fishing on the seafloor, it is necessary to distinguish different activities. In most instances, a distinction is made between drifting, fishing and steaming based on speed thresholds (Bastardie et al., 2010b; Fock, 2008; Rijnsdorp et al., 1998), although it has also been shown that better estimates can result if the information represented by vessel heading is utilised (Mills et al., 2007; Vermard et al., 2010). Although none of these methods will result in perfect identification of fishing behaviour, application does result in a marked improvement of our perception of spatial and temporal fishing activity and its effects on the ecosystem (Eastwood et al., 2007). Methods to identify, and therefore quantify fishing activity have been incorporated into the **segmentTacsatSpeed** (Bastardie et al., 2010b) or the **filterTacsat** functions in **vmstools**. There are many possible ways that fishing activity can be summarized. One can simply sum tacsat pings (where a ping represents the transmitted hourly or two hourly record of a vessel's ID, position, speed, heading and date/time stamp), fishing time or fishing distance over any spatial compartment. Once fishing activity has been established the **vmstools** package then allows the analyst to explore the spatial and temporal complexity within VMS data. Based on the established link between the example tacsat and eflalo datasets, reported landings and values from the eflalo dataset were assigned to the exact positions in the tacsat dataset. Eflalo cash values were only assigned to fishing tacsat positions for which the **segmentTacsatSpeed** function was used. This function returns fishing thresholds for
each vessel given the gears used (see figure 2). Tacsat records with speeds between these thresholds were assumed to be fishing.

2.6 Spatial distribution of landings and cash value

Logbook declarations are made at the coarse spatial scale of the ICES statistical rectangle (1° longitude by 0.5° latitude resulting in squares of approximately ~30nm x 30nm). Furthermore, the locations reported in the logbook are sometimes incorrect for a range of possible reasons (Gerritsen and Lordan, 2011). A sensible solution, then, is to exploit the connection between eflalo and tacsat to distribute landings and cash values from the logbooks at the much higher spatial (and probably more accurate) and temporal resolutions in VMS. There are, however, different aggregation levels at which these landings and cash values might be distributed among the tacsat fishing points (Bastardie et al., 2010b; Gerritsen and Lordan; Poos and Rijnsdorp, 2007). One method incorporated in the `vmstools` package (`splitAmongPings`) distinguishes three different orders, each with two or three levels. The first order is that of a full match between eflalo and tacsat using vessel IDs and trip numbers. The second order implies a match only on vessel ID, while third order means that no matching on vessel ID or trip number was possible. For first order matches, landings and cash values can be distributed among the tacsat positions, that were identified fishing, at all the various levels. These can be: landing day, landing ICES rectangle or trip number only; or a combination of these three. For second order situations, it is clear that only matches based on landing day and landing rectangle are possible. In the case of third order matches, however, distribution of landings and/or cash values can take place only between matches by landing day or landing rectangle. If no match can be found at any of the orders described, landings and/or cash values are, perforce, uniformly distributed among all tacsat pings within a year. In most occasions, however, only tacsat pings are used in which a fishing activity is assumed (see Appendix C for an overview scheme).

The allocation of cash values and landings to the example tacsat and eflalo dataset was carried out according to the following hierarchy: (1) a full match on date, ICES rectangle
and vessel IDs; (2) a partial match between ICES rectangle and vessel IDs; and (3) a weak match using only vessel IDs. Those eflalo records that could not be linked to any tacsat record at all are assigned first to tacsat records with similar vessel ID, following identical hierarchical levels, while those records without even similar vessel IDs are only assigned to records with matching landing date and ICES rectangle. Using this protocol we ensure that no cash-values or landings from the eflalo data are lost (see figure 3).

2.7 Interpolation and uncertainty
It can be informative to interpolate between the one or two hour interval tacsat positions to e.g. calculate area swept by mobile bottom gears or identify the origin of catches. Different interpolation techniques have been developed (Hintzen et al., 2010) of which straight line interpolation and the cubic Hermite spline method are embedded within the vimstools package (interpolateTacsat, interpolation2Tacsat). These methods can be used either in combination with an uncertainty estimator of possible trawling activity (calculateCI), or with methods for representing trawling tracks at their actual gear widths (addWidth).

From the example tacsat dataset, fishing tracks were reconstructed using the interpolation routines available in the vimstools package. This routine has, as yet, only been parameterized for large beam trawl fisheries. For the purpose of this example, however, we applied it here to all métiers in our test data. The interpolated track can be represented as a curved line segment (via cubic Hermite spline interpolation) or as a polygon reflecting the actual width of the gear. This enables scientists, in combination with GIS applications (e.g. Grid2KML can output data to Google Earth), to view the real scale of trawling impact by interactively zooming in and out (see figure 4 for a static representation). Hereafter, landings values were attributed to evenly spaced interpolated positions (interpolation2Tacsat).

2.8 Spatial resolution
The analyses described above are all executed without the need for any pre-defined spatial resolution, as they are conducted at the scale of the individual VMS pings. For the
purpose of visualizing results on maps (e.g. fishing effort per spatial unit) any size spatial
grid can be defined (*vmsGridCreate*, *createGrid*) using the package. **Vmstools** allows the
definition of spatial grids, given any step in either the longitudinal or latitudinal
directions. Alternatively, a more restricted spatial grid definition is available where each
grid cell is given a unique name following the C-square notation as developed by Rees
(Rees, 2006). It should also be noted here that the spatial analyses included in **vmstools**
rely heavily on the **sp** (Bivand et al., 2008) and **PBSMapping** (Schnute et al., 2008) R
add-on packages.
The aggregated tacsat and eflalo results, as presented in figures 3c is defined on
approximately square spatial grid cells with longitudinal steps of 0.1° and latitudinal
steps of 0.05°. A ten times more detailed spatial grid is defined for the results in figure
5b,c.

2.9 Indicators
Under the Ecosystem Approach to Fisheries Management, the use of indicators to
describe ecosystem status or health has gained importance over the past years and
several of those suggested can only be calculated by combining information from logbook
and VMS data. The EU Data Collection Framework (EC, 2008) has identified three
indicators that describe the spatial extent and impact of fishing activity: “Distribution of
fishing activities”, “Aggregation of fishing activities”, and “Areas not impacted by mobile
bottom gears” all of which can be estimated using the function *indicator* in the **vmstools**
package. It should be remembered that the choice of the spatial and temporal resolution
(month, quarter, year) is of great importance when calculating these indicators.
The DCF indicator 5, distribution of fishing activities, is calculated based on the interval
rate between pings in the example tacsat dataset. The minimal number of hours of
fishing activity to be included in the calculation, was set to 0, while the spatial grid
defined had cell dimensions of 0.1° longitude to 0.05° latitude. To calculate the surface,
the ’Trapezoid’ option was used over a more accurate but slower UTM (Universal
Transverse Mercator) projection option.
2.10 Visualisation

"A picture is worth a thousand words" is a particularly apt expression in the case of combined VMS and logbook analyses. The presentation of these data on maps which include geographic features such as coastlines and depth contours is extremely useful, and the \texttt{vmstools} package contains a rich suite of programs for facilitating such visualisation. Mapping routines have been developed to simplify the visualisation of tacsat and eflalo datasets, supported by existing routines from the \texttt{sp} package (e.g. \texttt{mapGrid, vmsGridCreate, plotTools}). These maps can be examined with the standard R plotting functions, while exports to other common spatial data formats are also possible. \texttt{Grid2KML}, for example, enables data to be examined in Google Earth, allowing users to interactively zoom in/out. Functionality is also available for creating animated GIFs (Graphics Interchange Format) directly from within R, via sequences of plots (\texttt{landingsMaps2GIFanim} using the \texttt{animation} R add-on package).

2.11 Regional databases

In many situations it is important to be able to assess the impact of fisheries at pan-European scales, i.e. by combining data from many EU member states. The confidentiality of these commercial data (both VMS and logbook), however, means that raw data (both VMS and logbook) will not be distributed freely among EU member states in the short term, making integrated analyses impossible. The only realistic solution, therefore, is to combine data from different countries in an aggregated format. In this context, the data warehouse for regional databases \texttt{FishFrame} (ICES, 2009) can now accommodate aggregated tacsat and eflalo data (see Appendix D for details). The program \texttt{pings2Fishframe} converts combined eflalo and tacsat data into the format used by \texttt{FishFrame}. Within \texttt{FishFrame}, reporting tools then allow users to display and extract any subset or combination of data required. As a proof of concept, \texttt{FishFrame} has been populated with subsets of Dutch and Danish data using tacsat, eflalo and the \texttt{vmstools} package.

\texttt{FishFrame} can be accessed over the web (http://www.fishframe.org). An extraction has been made using the ‘Data Output’ option, while selecting only Danish landing weights in
the year 2010 from the available landings VMS report. A C-square spatial grid was used
to plot the total weight in the VMS data. The final figure was exported from the
FishFrame web-interface and included in this paper which is shown in figure 6.

2.11 vmstools availability and testing

In Table 2, a short overview of software availability and system requirements is given. To
ensure the quality of the vmstools software, different methods have already been
extensively tested and published in peer-reviewed journals (i.e. Bastardie et al., 2010b;
Gerritsen and Lordan, 2011; Hintzen et al., 2010). Further testing is promoted through
the use of the embedded example tacsat and eflalo which enables reliable and repeatable
testing. Thereby, a manual page is written for each function available, which can be
accessed at the command line in R or as a printable digital document (also available at
http://code.google.com/p/vmstools/downloads/list), which includes an example of the
function tested to operate properly when ‘compiling’ the R package. At the time of writing
78 functions are available in vmstools.

3. Results

The general methods as described above have been applied to the example tacsat and
eflalo dataset. As the datasets only comprise a subset of total activity of Dutch vessels
over a two year period, no conclusions or remarks are drawn on the basis of actual
patterns observed. The tables and figures are for illustration purposes only to present the
capabilities of the software.

3.1 Cleaning the data

Table 1 lists the number of records in the tacsat and eflalo datasets that were removed
or flagged as they were regarded to be incorrect. In total 15% of the total tacsat records
and 3% of the eflalo records were flagged or removed. Contrary to our findings in the
example, in general tacsat datasets contain many duplicate records where either the GPS
transponder malfunctioned or the storage of records was processed incorrectly. Due to
pre-analyses to construct the example tacsat dataset, most of these have been removed.
3.2 Métier identification

For the example eflalo data, the HAC method (i) selects 30 of the 78 initial species, the second method (ii) nine, and the third (iii) 31 species. The combination of these sets defines the species retained. Within this exercise, 32 species which represent 98.9% of the total catch are retained for further analyses (extractTableMainSpecies). The PCA analyses of the “70% of the initial inertia” criteria indicates that 21 axes are needed to retain this threshold. Clusters of similar logbook events characterized by species assemblage are processed using the getMetierClusters, where the clustering method CLARA has been used to identify the métiers of the example eflalo dataset. This method proposes a classification in four clusters characterized by one or more species. The clusters count respectively 4040, 69, 244 and 186 logbook events. Cluster one corresponds to a flatfish métier, listing sole and plaice as main target species. Cluster two lists eel and lobster while cluster three is characterized by mackerel and Horse mackerel. The fourth cluster is characterized by sea bass and mullets (see figure 7). Hereafter, the eflalo dataset is complemented with a column indicating the métier identification per logbook event.

3.3 Linking eflalo to tacsat data

In total 96% of all tacsat records could be linked to an eflalo record. The results of this process are shown in figure 3a which represents landings from eflalo data by ICES statistical rectangle. Landings are then assigned to tacsat positions and the output summed over the same grid (ICES statistical rectangles, figure 3b); while in the last map (figure 3c) the same data is aggregated over a finer grid. Clearly, while the first two plots are rather similar a totally different understanding of landings by this fleet is gained when examining the data at the finer scales.

3.4 Fishing activity

Fishing activity has been determined for all vessels, however, figure 2 only shows the results for vessel ID 298138. The analyses, based on speeds, computed from the Euclidian distance and time difference between VMS pings, rather than instantaneous
speed, results in a fishing speed upper and lower boundary of respectively 3.29 and 5.31 knots per hour. Figure 2a represents the cumulative and pre-smoothed distribution of speeds employed by the vessel, while figure 2b represents the instantaneous speed distribution where figure 2c represents the calculated speed distribution.

3.5 Reconstruction of fishing trips with higher ping-rates

In total 11668 fishing tracks were reconstructed from the tacsat dataset, noting that reconstruction is set to take place only when fishing positions are at most 2 hours apart. In our test data this amounts to 46% of all tacsat records classified as fishing.

Figure 5a presents the fine scale distribution of landings of herring, plaice and sole in the North sea, identical to figure 3c. The difference between panel (5b) and (5c) shows how the information-density and perception of spatial impact can differ when using different track reconstruction techniques. Figure 4a shows the tacsat positions of vessel 157 employing a beamtrawl gear. Figure 4b shows the same vessel, however, now after reconstruction of fishing trips. Adding a width to the same interpolation (addWidth) results in figure 4c and 4d representing the actual width of the gear.

3.6 Indicators

A graphical representation of distribution of fishing activity, calculated based on the example tacsat and efalalo dataset, by month, as follows from Table 3, is given in figure 8. The activity is defined as the number of hours of fishing activity in each grid cell.

3.7 Fishframe

FishFrame is only populated with real data. Hence, the example given in figure 6 represents Danish landings data in 2010 only of species cod. The pre-processing to populate FishFrame with these data was executed using the vmstools package.

4. Discussion
Vessel Monitoring by Satellite system data are potentially valuable for quantifying the activity and impact of fishing on the marine environment. They can be used to inform spatial planning, to address conservation and biodiversity management and to monitor seafloor integrity and bottom impact of fishing (CEC, 2007). This study demonstrates how VMS data and logbook analyses can be performed in an efficient and standardized manner using the \texttt{vmstools} package in conjunction with R. Although the literature provides examples of similar procedures, analyses and visualizations of VMS and logbook data (Bastardie et al., 2010b; Fock, 2008; Gerritsen and Lordan, 2011; Hintzen et al., 2010; ICES, 2010; Lee et al., 2010; Pedersen et al., 2009), no framework had yet been presented that enables such analyses to take place in a consistent manner via transparent open-access tools. Similarly, while many previous studies have applied clustering methods to define métiers at the national level (Marchal, 2008; Ulrich et al., 2009), no generic framework for comparing these methods and suggesting a complete, objective and operational workflow for the analyses of landings profiles at the supra-national (regional) level had yet been implemented. The strength of the \texttt{vmstools} package is that it has built upon the existing, but isolated tools, to provide such a unified framework. Hence, the \texttt{vmstools} library is qualified to respond to the demand for standard and transparent procedures that can be done by different analysts, and is already recommended as the basis for future work on VMS and logbook analyses by ICES (ICES, 2011).

Here, R was chosen as the development environment for a variety of reasons. In Europe, many fisheries institutes are familiar with its operation, secondly it is freely available, and thirdly it has an ever-growing list of additional libraries (Thyer et al., 2011) which can be utilized within the VMS and logbook analyses. It is often criticised for being computationally slow in comparison with other systems especially when dealing with large datasets such as VMS data. In constructing generic routines, however, we ensured that the algorithms are as efficient as possible and indeed most jobs can be achieved quickly and hence we believe that the advantages of R outweigh its disadvantages. For example, there is no need to switch between different programs to complete a back-to-
back analyses, or use complicated interfaces that allow different software programs to communicate with each other, in contrast to other geospatial tools where a suite of programs is used to improve speed performance of the analyses (Roberts et al., 2010; Cagnacci and Urbano, 2008). Further these are often prone to failures when updates are released (Roberts et al., 2010). Moreover, documentation of the generic functions is straightforward, as is the creation of help files and the provision of example scripts. The mapping facilities in R are also very powerful. However, although many of the generic functions take the spherical shape of the earth into account (utilizing additional libraries), it is to be noted that no true GIS environment is mimicked, and this may, in some situations result in small differences, as in most calculations the earth is assumed to be described by a perfect sphere. Especially when decreasing the spatial resolution, the differences become significantly different.

Key to the start of vmstools was an agreement on common data formats. The data formats (eflalo, tacsat) were chosen on the basis that many European fisheries institutes had previous expertise in using them for exchanging scientific programs and data. Hence, it was viewed as a practical solution to implement these formats as standard and on which all functions developed rely. The use of these standardized data format can and has facilitated the development of the software greatly (Kranstauber et al., 2011) and also ensures users of a degree of quality assurance marked as important by ICES (ICES, 2010). Moreover, the standardized input files can be processed with vmstools and then output files can be created which can be uploaded into FishFrame. Once the data are in FishFrame, data from different countries all over the world can then be integrated to produce regional maps. The advantage of this approach is that each country always keeps its raw VMS and logbook data locally, while also being able to exploit the more comprehensive coverage available in the regional database of aggregated data. These aggregated VMS and logbook data can then be linked to other fishery-related data types, e.g. survey information, biological sampling or discard information.
Providing software with built-in functionality to efficiently process and analyse VMS and logbook data also has its downside. Scientists, who are not aware of the implications of the raw VMS and logbook data, can potentially misinterpret the results provided via one of the algorithms. The ability, for example, to distribute landings and the associated cash-values from logbooks among VMS positions is still controversial; although such analyses are already appearing in the literature (Gerritsen and Lordan, 2011). The procedure can give the impression that landings were indeed taken from these very localised positions, and this may be misleading since it is merely an interpretation of independent sources, and thus it depends much on our ability to merge the VMS data successfully with the logbooks and to estimate real fishing activity.

Developing software in science should facilitate the scientific process to either standardize certain processes or make them more efficient. The framework described here enables scientists to easily combine detailed information from e.g. companies laying cables, oil and gas exploration, or wind farms with fishing activity information which can be used to inform, at high spatial scale, models that study spatially explicit fisheries behaviour and their impact on marine ecosystems (Bastardie et al., 2010a). The spatial detail comprised by the combined information might be used to link environmental drivers to fisheries behaviour, or even to relate sea mammal tracking data with fishing data for e.g. spatial overlap studies to determine human-mammal competition (Matthiopoulos et al., 2008) or sea bird movement to fishing activity (Copello and Quintana, 2009) in and outside closed areas (Trebilco et al., 2008). Especially when dealing with spatial management, the information obtained from linked VMS and logbook data plays an important role (Dinmore, 2003; Fock, 2008; Murawski et al., 2005; Pedersen et al., 2009; Stelzenmuller et al., 2008) where spatial activity information is used to facilitate the process in designing marine protected areas or inform stakeholders on fishing impact. Similarly, grouping fishing activities into limited numbers of métiers at the regional scale is the first necessary step towards integrated fleet-based fisheries management, allowing moving beyond the current single-stock management schemes when fisheries are mixed (Ulrich et al., 2009). New insights in these fields, supported by
technical advances could easily be incorporated exposing scientific breakthroughs to a much larger public and provide a transition from output to outcome oriented science where applications may change how spatial management is organized (Matthews et al., 2011). Hence, the authors hope that the **vmstools** framework will allow the user to focus on (a better understanding of) the impact of human activities on the marine ecosystem where the knowledge gained, not necessarily the software, plays a central role (Matthews et al., 2011).

5. Supplementary material

Supplementary material is available at the Fisheries Research online version of the paper and includes a detailed description of the eflalo and tacsat data formats, the R-script used to perform all analyses as shown in this paper, a graphical overview of the linking process between eflalo and tacsat and a detailed description of the FishFrame format.

Acknowledgements

This study was funded by the Commission of the European Communities under the call for tender MARE/2008/10; Lot 2 - Development of tools for logbook and VMS data analysis. We thank all other members, Fabrizio Manco, Hans Gerritsen, Sebastien Demanche, Stephanie Mahévas, Martial Laurans, Neil Campbell, J. Rasmus Nielsen, Stuart A. Reeves, Colm Lordan and Ryszard Grzebielec for their efforts within the project.

References

Bivand, R.S., Pebesma, E.J., Gómez-Rubio, V., 2008. Applied Spatial Data Analysis with

Deporte, N., Bastardie, F., Demanèche, S., Mahévas, S., Ulrich, C., submitted, Comparative investigation of statistical methods for identifying fishing activities from logbook data: Example of application to the international otter trawl fisheries in the North Sea.

programme pursuant to Council Regulation (EC) No 199/2008 establishing a
Community framework for the collection, management and use of data in the
fisheries sector and support for scientific advice regarding the common fisheries

Fock, H.O., 2008. Fisheries in the context of marine spatial planning: Defining principal
areas for fisheries in the German EEZ. Marine Policy 32, 728-739.

Gerritsen, H., Lordan, C., 2011. Integrating vessel monitoring systems (VMS) data with
daily catch data from logbooks to explore the spatial distribution of catch and
effort at high resolution. ICES Journal of Marine Science 68, 245-252.

100-108.

Hintzen, N.T., Piet, G.J., Brunel, T., 2010. Improved estimation of trawling tracks using
cubic Hermite spline interpolation of position registration data. Fisheries Research

ICES, 2009. Definition of Standard Data-Exchange Format for Sampling, Landings, and
Effort Data from Commercial Fisheries. ICES Cooperative Research Report,
Copenhagen, p. 44.

ICES, 2010. Report of the Study Group on VMS data, its storage, access and tools for
analysis (SGVMS). ICES CM 2010/SSGSUE:12, Copenhagen, p. 46.

ICES, 2011. Report on the Workshop on the utility of commercial CPUE and VMS data in

Global analysis of response and recovery of benthic biota to fishing. Marine
Ecology Progress Series 311, 1-14.

Kell, L.T., Mosqueira, I., Grosjean, P., Fromentin, J.-M., D., G., Hillary, R., Jardim, E.,
source framework for the evaluation and development of management strategies.
ICES Journal of Marine Science 64, 640-646.

the sustainability and economic performance of a mixed fishery: a simulation

Kranstauber, B., Cameron, A., Weinzerl, R., Fountain, T., Tilak, S., Wikelski, M., Kays, R.,
Software 26, 834-835.

Lee, J., South, A.B., Jennings, S., 2010. Developing reliable, repeatable, and accessible
methods to provide high-resolution estimates of fishing-effort distributions from
vessel monitoring system (VMS) data. ICES Journal of Marine Science 67, 1260–
1271.

News Books.

Matthews, K.B., Rivington, M., Blackstock, K., McCrum, G., Buchan, K., Miller, D.G.,
2011. Raising the bar? - The challenges of evaluating the outcomes of
environmental modelling and software. Environmental Modelling & Software 26,
247-257.

Getting beneath the surface of marine mammal – fisheries competition. Mammal
Review 38, 167-188.

Estimating high resolution trawl fishing effort from satellite-based vessel
monitoring system data. ICES Journal of Marine Science 64, 248-255.

Table and Figure captions

Table 1: Overview of processing and filtering results of the example tacsat and efalo data files. Original number of rows in each dataset is given, while percentages removed / flagged are calculated based on the original number of entry rows.

Table 2: Overview of software availability and system requirements
Table 3: Results by month of DCF indicator 5 calculation on three different spatial scales. Spatial scales are given in degrees longitude and degrees latitude respectively. Values denote the total surface (in km2) with fishing activity by month as calculated as the sum of the grid cells surface with fishing activity.

Figure 1: Panels show part of the North Sea where in panel (a) red dots represent all vessel positions as listed in the tacsat file. In panel (b), dark blue dots represent all points that are flagged 'in harbour' which have been selected based on a 3km radius from a chosen central point in each European harbour. In panel (c) all vessel locations that are located on land are represented by dark orange dots. The analyses are based on the example tacsat and eflalo datasets available in the *vmstools* package. (NOT FOR PUBLICATION: color on web, black-and-white in print)

Figure 2: Segmented regression analyses of vessel (ID = "298138", gear = OTM) where panel (a) represents the cumulative distribution of calculated speeds. The blue vertical dotted lines represent the speed thresholds (at 3.29 and 5.31 knots per hour) as identified by the segmented regression in which the vessel is assumed to be fishing. Panel (b) shows the instantaneous speed distribution as provided by the VMS data while panel (c) shows the speed distribution calculated given the Euclidian distance and time interval between successive VMS pings. The analyses are based on the example tacsat and eflalo datasets available in the *vmstools* package. (NOT FOR PUBLICATION: color on web, black-and-white in print)

Figure 3: Panels show aggregated and standardized (for confidentiality purposes) landings of herring, plaice and sole in (part of) the North Sea where in panel (a) landings from eflalo by ICES statistical rectangle (the highest spatial detail possible, 1 x 0.5 grid cell in respectively longitudinal and latitudinal degrees) are shown; Panel (b) shows landings after linking tacsat and eflalo by ICES statistical and distributing landings from eflalo according to tacsat positions. Panel (c) shows landings after linking tacsat and eflalo by 0.1 x 0.05 grid cell in respectively longitudinal and latitudinal degrees. The analyses are based on the example tacsat and eflalo datasets available in the *vmstools* package. (NOT FOR PUBLICATION: color on web, black-and-white in print)

Figure 4: Panels show the distribution of a single fishing vessel in the southern North Sea (ID = "157", gear = TBB) where panel (a) represents all the VMS pings available in the test tacsat dataset in *vmstools* after filtering erroneous records. Panel (b) shows the interpolated fishing tracks where non-fishing behaviour has been filtered out. Panel (c) shows a similar interpolation, however, added with a representative gear width. As this gear width only stretches 24 meters, it is hardly visible on the large North Sea scale, hence, panel (d) represents an enlargement of a smaller area where the width of the gear is spatially shown. The analyses are based on the example tacsat and eflalo datasets available in the *vmstools* package. (NOT FOR PUBLICATION: color on web, black-and-white in print)
Figure 5: Panels show aggregated and standardized (for confidentiality purposes) landings of herring, plaice and sole in (part of) the North Sea where in panel (a) the standardized landings as obtained from the tacsat dataset are shown at a scale of 0.1 x 0.05 in respectively longitudinal and latitudinal degrees. Panel (b) shows an enlargement, and finer spatial scale, of the black squared area from panel (a) at a scale of 0.01 x 0.005 in respectively longitudinal and latitudinal degrees. Panel (c), also shows an enlargement at a finer spatial scale of this area, but is based on a tacsat dataset complemented with reconstructed fishing tracks where each successful track is assigned eight intermediate points. The analyses are based on the example tacsat and eflalo datasets available in the vmstools package. (NOT FOR PUBLICATION: color on web, black-and-white in print)

Figure 6: Landings (in kg) of Atlantic cod by the Danish fleet in the first quarter of 2010 as extracted from the online FishFrame tool. Landings are aggregated at a scale of 0.05 x 0.05 in longitudinal and latitudinal degrees (smallest C-square resolution). (NOT FOR PUBLICATION: color on web, black-and-white in print)

Figure 7: Percentage of cash value per species (FAO code) per cluster (I to IV) applying the procedure PCA & CLARA algorithm on the example eflalo data set available in the vmstools package. Only species labels with cash value greater than 10% within at least one cluster are displayed for clarity. Abbreviations: SOL: sole, PLE: plaice, MUL: Mullets, MAC: mackerel, LBE: European lobster, JAX: Horse mackerel, ELE: Eel, BSS: sea bass. (NOT FOR PUBLICATION: color on web, black-and-white in print)

Figure 8: Panels show the activity of fishing by month, based on the DCF indicator 5, represented at a scale of 0.1 x 0.05 in respectively longitudinal and latitudinal degrees. The aggregated indicator values can be obtained from Table 3. The analyses are based on the example tacsat and eflalo datasets available in the vmstools package. (NOT FOR PUBLICATION: color on web, black-and-white in print)
Table 1: Overview of processing and filtering results of the example tacsat and eflalo data files. Original number of rows in each dataset is given, while percentages removed / flagged are calculated based on the original number of entry rows.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Processing description</th>
<th>% removed / flagged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacsat</td>
<td>Longitude, latitude and speed outside range</td>
<td>0.00%</td>
</tr>
<tr>
<td>Tacsat</td>
<td>Duplicate records removed</td>
<td>0%</td>
</tr>
<tr>
<td>Tacsat</td>
<td>Points in harbour</td>
<td>15.22%</td>
</tr>
<tr>
<td>Tacsat</td>
<td>Points on land</td>
<td>0.16%</td>
</tr>
<tr>
<td>Eflalo</td>
<td>Mesh size out of range</td>
<td>0.57%</td>
</tr>
<tr>
<td>Eflalo</td>
<td>Duplicate records removed</td>
<td>2.05%</td>
</tr>
<tr>
<td>Eflalo</td>
<td>Arrival date before departure date</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 2: Overview of software availability and system requirements

<table>
<thead>
<tr>
<th>Name of software</th>
<th>Developers</th>
<th>Contact</th>
<th>Year first available</th>
<th>Hardware recommended</th>
<th>Software required</th>
<th>Program Language</th>
<th>Program size</th>
<th>Availability</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmstools</td>
<td>IMARES, DTU-Aqua, IFREMER, CEFAS</td>
<td>Niels.Hintzen@wur.nl</td>
<td>2011</td>
<td>2 GB RAM, 2 GHz CPU</td>
<td>>= R2.11.1, compiled for Unix or Windows OS</td>
<td>R</td>
<td>~4 MB</td>
<td>http://code.google.com/p/vmstools/downloads/list</td>
<td>Free, available as package under R</td>
</tr>
</tbody>
</table>

Table 3: Results by month of DCF indicator 5 calculation on three different spatial scales. Spatial scales are given in degrees longitude and degrees latitude respectively. Values denote the total surface (in km^2) with fishing activity by month as calculated as the sum of the grid cells surface with fishing activity.

<table>
<thead>
<tr>
<th>Month</th>
<th>Spatial scale 1 - 0.5</th>
<th>Spatial scale 0.1 - 0.05</th>
<th>Spatial scale 0.01 - 0.005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107535</td>
<td>6649</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>88238</td>
<td>6866</td>
<td>131</td>
</tr>
<tr>
<td>3</td>
<td>74442</td>
<td>8776</td>
<td>301</td>
</tr>
<tr>
<td>4</td>
<td>127857</td>
<td>9201</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>182241</td>
<td>48894</td>
<td>1734</td>
</tr>
<tr>
<td>6</td>
<td>150221</td>
<td>17245</td>
<td>391</td>
</tr>
<tr>
<td>7</td>
<td>95719</td>
<td>4300</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>124076</td>
<td>9769</td>
<td>208</td>
</tr>
<tr>
<td>9</td>
<td>182898</td>
<td>75217</td>
<td>3337</td>
</tr>
<tr>
<td>10</td>
<td>130768</td>
<td>10010</td>
<td>136</td>
</tr>
<tr>
<td>11</td>
<td>112094</td>
<td>6355</td>
<td>84</td>
</tr>
<tr>
<td>12</td>
<td>49307</td>
<td>4723</td>
<td>86</td>
</tr>
</tbody>
</table>
Figure 3 Color
Click here to download high resolution image