Department of Civil Engineering Annual Report 2010

Welin, Charlotte

Publication date: 2011

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Department of Civil Engineering
Annual Report 2010
Contents

From the Head of Department 04

Organisation 06

Efficient modelling framework for concrete casting 07

Monopile foundations for offshore wind turbines 08

Upgrading waste to secondary resources 10

Bridge dynamics 11

Integration of sustainable construction processes in the Øresund Region 12

Intervision for PhD students 14

Pioneering ventilation saves human life and energy 15

Controlling flow interaction to ensure more clean air for occupants at reduced supply flow rates 16

Simulation of crack propagation in concrete structures 18

Emergency evacuation of mixed populations 20

New BSc in Architectural Engineering 21

Greenlandic mining waste as raw material in construction materials 22

Do our children have enough fresh air in their bedrooms 24

Low-temperature District Heating for Low-energy Buildings 26

Publications 28

Journal papers, ISI-indexed 28
Journal papers, peer reviewed 31
Journal articles, popular 32
Books 32
Book chapters 32
Conference papers, peer reviewed 33
Scientific publications, no referee 39
Scientific reports 40
PhD theses 40
MSc theses 41
BEng theses 43
BSc theses 44

Donations 45

Staff, education, research, finance 46
Review of 2010

It is with great pleasure and pride that I present this review of the activities at the Department of Civil Engineering at the Technical University of Denmark – DTU Byg. Thoughts on the challenges we face in future are given elsewhere in this magazine by our new Head of Department, Michael Havbro Faber. I will concentrate on reviewing last year’s activities, and at the same time give some idea of the Department’s potential to meet these future challenges.

Last year, I emphasized the huge responsibility that rests on present and future generations of engineers to provide the scientific and technological basis to meet the challenges related to global resource depletion, sustainable global development, the climate change challenge and the threat from global pollution – to mention just a few. In particular, I emphasized that civil engineers will play a central role in developing our society in a more sustainable direction in future, for example by ensuring that energy consumption in buildings is reduced from the current excessive levels, that new infrastructure is sustainable with minimized energy and material consumption, and that the huge investments made in new infrastructure are long-lasting.

Even though the civil engineering profession is a lifelong education, the essential and extremely important years spent at university engaged in studies at Bachelor, Master’s or PhD level are not to be underestimated. It is here that students acquire basic knowledge, but it is also where personalities are molded and, in many cases, lifelong personal missions take shape through interacting with researchers, professionals and other students. Therefore it is a very important – and big – step to start a new study programme, and the mission, profile and added value should be carefully evaluated.

Last year, the Department undertook the task of developing a new study programme – Bachelor of Science in Architectural Engineering. This programme will provide candidates with a strong, scientific background in sustainable building design. The studies will provide the best possible background for our existing Master of Science in Architectural Engineering, and I am sure that candidates from these study programmes will play a very important role in building and rebuilding habitats for our society in the future – in Denmark and worldwide. With the new Bachelor in Architectural Engineering, the set of study programmes rooted at the Department is now complete with two main directions – Building Design and Building Technology, with both offering a Bachelor of Engineering and a Bachelor/Master’s track plus the rapidly growing study programme in Arctic Technology. Clearly a very attractive set of programmes, which in 2010 attracted more than 750 applicants.

All study programmes are research-based, and a strong research environment is vital, not only for the educational activities but also for the innovation and public sector consultancy which are all-important elements of the Department’s activities. I am happy to report that the research environment in 2010 proved as strong and productive as ever, not only by numeric indicators – such as the number of ISI publications and the number of citations – but also by relevance and added value to society. You will quickly realize this when browsing through the exciting articles in this magazine, all dealing with current and central issues in the building sector and society as a whole and ranging from advances in building materials, structural testing and analysis, the energy infrastructure, resources and waste management to the indoor climate, construction processes, and safety issues. For the researcher or highly qualified professional, doing a PhD constitutes a very important stepping stone. The Department is taking a very active role in the offensive national strategy to significantly increase the number of PhD students in the technical scientific area in the 2007-2012 period. The number of PhD students at the Department has now reached 67. All candidates follow a very demanding programme, including a research project, professional education and training in the dissemination of scientific knowledge. For most candidates this is also associated with a challenging personal development – which can often be quite stressful. In the magazine, you can read about the ‘intervision project’, which is designed to help students manage the challenges of PhD life at the Department. Finally, I would also like to draw your attention to the article on the ‘PhD of the Year 2010’ at DTU Civil Engineering, which demonstrates the very high quality and relevance of the PhD projects carried out at the Department. The project applies the full range of scientific tools from experimental to advanced numerical modeling work in an area of high relevance, resulting not only in scientific publications, but also patenting. I hope you enjoy reading the magazine.

Deputy Head of Department
Henrik Stang
hs@byg.dtu.dk
Challenges ahead

After three very eventful months full of new impressions as Head of Department, not only have I gained a good insight into the many different activities, competencies and resources at DTU Civil Engineering, I also have a clear sense of the tremendous development potential which the department holds. DTU Civil Engineering possesses a wealth of values, traditions and human resources, and we must use them as a platform in the coming years as we gear up for the challenges ahead. But what sort of challenges are we facing? They are many, and they are not to be taken lightly.

Civil engineers play a key role in society. On the one hand, homes, buildings and infrastructure are the foundations for the functions and processes that lead to economic growth and thereby welfare, health and quality of life for individual citizens. On the other hand, from a global point of view, these very same activities are some of the biggest consumers of energy and materials. This is the complex field in which DTU Civil Engineering operates.

Never before has the building and construction sector had to shoulder such responsibilities and tasks. We must ensure that built-up areas are developed and maintained in step with the demand for buildings and infrastructure – and we must devise sustainable and optimal solutions while taking account of quality of life, security, the environment and the economy. The recent earthquakes in Japan and their knock-on effects highlight the importance of high engineering standards. Civil engineers are responsible for the safety and reliability of buildings and infrastructure, both in daily use and in extraordinary situations. Also, our built-up surroundings must be robust and up to date; in other words, they must be capable of withstanding and being adapted to climate change as well as the varying needs, functionalities and the considerable uncertainties associated with it.

Assuming responsibility for all this demands far more than experience and traditions – it takes a strong sense of relevance combined with basic knowledge, innovation and visions. DTU Civil Engineering possesses these components – but to develop them further we need to take a critical view of where we are starting out from. During the past eight to ten weeks, we have therefore launched and implemented a number of situational analyses of the department which, at different organizational levels, map the roles we regard as being essential, as well as our strengths and weaknesses, both in relation to the academic areas we represent, our research facilities, the way in which we are organized and, in particular, the way in which we go about our work – and also how we define our working culture. The situational analysis is the starting point for establishing visions and goals for the department as well as identifying the strategy and the means for ensuring that we do not just aim for the goals, but that we are also able to adjust our course along the way in line with changing opportunities and conditions. In my view, one of the department’s most important tasks is to help industry and society find new approaches to sustainable building and future-proof solutions in connection with major infrastructural and renewable energy projects. And we must be pioneers in this role. It is crucial that we set ourselves ambitious goals, and establish an inspiring framework for our work that will help us to find innovative solutions and open up as yet unseen opportunities. We obviously also have to further improve existing concepts and methods – but we must seek new boundaries to a much greater extent. We can only do this if we strive to achieve goals that do not appear possible with existing technology – that is our challenge.

Head of Department
Michael Havbro Faber
mhf@byg.dtu.dk
Figure: Organisation Diagram

Head of Department:
Michael Havbro Faber (1/1 2011)
Deputy Head of Department
Professor Henrik Stang

Advisory Board:
Professor (adj) Louis Becker, Architect MAA, AIA, RIBA, Design Director, Partner, Henning Larsen Architects A/S
Director Niels Ole Karstoft, ALECTIA A/S
Division Director Niels Kjeldgaard, MT Højgaard A/S
Head of Division Marie Voldby, Danish Enterprise and Construction Authority

Sections:
Arctic Technology and Engineering Geology
Professor Arne Villumsen
Building Design
Professor Kristian Hertz
Building Physics and Services
Professor Carsten Rode
Construction Materials
Professor Ole Mejlhede Jensen
Geotechnics
Associate Professor Ole Hededal
Indoor Environment
Professor Bjarne Olesen
Structural Engineering
Professor Jeppe Jönsson
Administration and IT
Søren Burchardt
Laboratories and Workshops
Jørgen Bjørnbak Hansen

Centres:
ARTEK, Arctic Technology Centre
Professor Arne Villumsen.
ICIEE, Centre for Indoor Environment and Energy
Professor Bjarne W. Olesen.

Study Programmes:
Civil Engineering (MSc)
Associate Professor Staffan Svensson
Building Technology (BSc)
Professor Per Goltermann
Architectural Engineering (MSc)
Associate Professor Jan Karlshøj
Architectural Engineering (BSc)
Associate Professor Toke Rammer Nielsen
Architectural Engineering (BEng)
Associate Professor Lotte Bjerregaard
Building Engineering (BEng)
Associate Professor Anette Krogsgaard
Arctic Technology (BEng)
Associate Professor Hans Peter Christensen
Concrete is the world’s most important construction material. In Denmark, 10 million tons are produced annually. Conventional concrete requires vibration to overcome its yield stress and become compacted. Vibration is noisy, labour intensive, and can introduce inhomogeneities in the concrete.

To overcome the need for vibration, Self-Compacting Concrete (SCC) was introduced in Japan in the 1980s when new types of admixtures became available. SCC is a tailored concrete with special, engineered properties in its fresh state. SCC flows into the formwork and around reinforcement by its own weight. This dramatically improves both productivity and the working environment during construction, and potentially improves the homogeneity and quality of the concrete. Moreover, SCC allows greater architectural freedom in structural design. The main challenges and opportunities in using SCC lie in its robustness and the compatibility of constituent materials, the modelling of flow and virtual mix design, and last but not least, its sustainability.

A major obstacle to using SCC more extensively is the lack of understanding of the form-filling process. Possible heterogeneities induced during the casting of the SCC may lead to variations in local properties and hence to a potential decrease of the load carrying capacity and durability at the structural level. Heterogeneities in SCC are primarily caused by the static and dynamic segregation of coarse aggregates. Thus, to predict castings with SCC, a necessity is numerical model(s) capable of simulating flow patterns at the structural scale, and at the same time the impact on the flow of the varying volume fraction of aggregates and other phenomena at the scale of aggregates.

Efficient modelling framework
Combining the competencies of the multidisciplinary project group at the Technical University of Denmark, DTU, an efficient modelling framework was established. The framework is capable of simulating macroscopic phenomena at particle level simultaneously, since one influences the other. At the structural scale, a finite volume-based single-flow model with a proper particle tracking technique can be used. A micro-mechanical fully coupled model for the flow of particulate suspensions based on the Lattice Boltzmann Method provides the link between local flow patterns and arrangement of phases with effective properties on the macro-scale. This leads to the development of a robust and efficient solver for fluid-particle dynamics for materials with similar densities (results in high accelerations).

Members of the group
The project “Prediction of flow-induced inhomogeneities in self compacting concrete” runs from November 2008 to October 2012 and employs both Jon Spangenberg, PhD student at the Mechanical Engineering Department, and Jan Skocek, Post Doc at the Civil Engineering Department. The project group consists of researchers from the Department of Civil Engineering at DTU (Henrik Stang, Jan Skocek and Mette Geiker), the Department of Mechanical Engineering at DTU (Jesper Hattel, Jon Spangenberg and Jesper Thorborg), and the Department of Chemical and Biochemical Engineering at DTU (Peter Szabo) together with a group of associated partners from the industry and the international research institute LCPC (IFSSTAR since 1 January 2011), France (Nicolas Roussel). The project is funded by the Danish Research Council. The first two years of the project were spent establishing the modelling framework. Over the next two years, the framework will be further developed and documented based on experimental and in-situ observations. In addition, the applicability of the modelling framework for process optimisation will be demonstrated.
Monopile foundations for offshore wind turbines

Centrifuge modelling is used by the geotechnical group at DTU Civil Engineering to investigate the response from monopiles. The observations are being used to develop design tools for offshore wind turbine foundations.

PhD student Rasmus Tofte Klinkvort
Section for Geotechnics
rakli@byg.dtu.dk
Energy from offshore wind turbines

More and more energy is being generated by offshore wind turbines, and new wind farms are being sited in deeper and deeper waters. The sea offers the opportunity of installing large wind farms, but the installation and running costs of these wind turbines are huge. If energy from offshore wind turbines is to compete with energy from coal, it is important to cut the total cost of offshore wind turbines. The monopile foundations concept is today the most widely used concept for supporting offshore wind turbines. Monopiles are single, large diameter tubular steel piles. If this foundations concept can be successfully used in deeper waters, the price of the foundations can be minimised and thereby also the total cost of the wind turbine. Today this is not possible with the available design tools.

Research in the geotechnical group

The response from monopile foundations for offshore wind turbines is one of the main research objectives of the geotechnical group at DTU Civil Engineering. Centrifuge and numerical modelling is being used to develop engineering tools for monopile foundations in the future. The work is being carried out in collaboration with other universities and the industry to ensure the good and practical use of research findings.

Centrifuge modelling

Compared to fullscale testing centrifuge modelling is a low-cost tool for investigating soil-structure interaction. By applying artificial gravity on a soil sample, a scaled model of a foundation can be investigated. Due to the artificial gravity, the soil sample will have soil stresses identical to the prototype conditions. Soil is non-linear in its behaviour, and to ensure the same behaviour in the model and the prototype, the stresses have to be equal. As long as the soil behaves as a continuum, the length of the models is scaled linearly with the increase in gravity. This means that a model pile with a diameter of 0.04 m to which an increase in gravity of 100 is applied behaves like a prototype pile with a diameter of 4 m.

The centrifuge at the Technical University of Denmark is a beam centrifuge and is capable of providing an increase in gravity of approximately 85. A grant from the COWIfoundation facilitated the development of a new load system for testing monopiles for wind turbines. Following this upgrade, the geotechnical centrifuge is today the only geotechnical centrifuge in the world dedicated to conducting research into monopile foundations for wind turbines. Scale effects in centrifuge modelling can occur if shear bonds occur. When developing tools for foundations 85 times bigger than the model, it is extremely important that small scale effects are also recognised. At the moment, the research is focused on these scale effects. This part of the research is being carried out in cooperation with Professor Sarah Springman, leader of the geotechnical group at the Swiss Federal Institute of Technology Zurich, ETH Zurich.

Outlook

The preliminary findings from the scale effects investigation is that the installation process is a key modelling parameter. An installation process corresponding to prototype behaviour is important. Proper installation of the model monopile will not only minimise scale effects but also simulate prototype behaviour of monopiles. With this clarification of scale effects, further centrifuge research on monopiles can continue with the possibility of scaling up to prototype conditions. The centrifuge modelling, together with the numerical modelling, creates a strong toolset in the further development of the monopile foundations concept for offshore wind turbines.
Upgrading waste to secondary resources

Many types of ashes are unusable in the construction material industry because they are polluted. A research area at DTU Civil Engineering aims at using more particulate waste material such as ashes in the construction industry by cleaning the ash during electrochemical extraction.

In Denmark, fly ash from coal combustion is the only ash type used in concrete. There are, however, many other ash types which have not found such use, and today these are regarded as waste (often hazardous waste) and consequently landfilled. This untenable situation calls for a more sustainable solution, which is the focus of a research area at DTU Civil Engineering. The construction material industry in general uses large volumes of particulate raw materials and is a potential user of the various ashes.

Direct use not possible
In recent years, an increasing number of international scientific papers have been published on the addition of different ashes to cement, concrete and ceramics. Often the ashes can be used if their material strength is the only consideration, but usually the chemical composition of the ash fails, for example if the ash has a high heavy metal content which hinders environmentally sound use, or if the ash contains unwanted salts.

The research area at DTU Civil Engineering is looking at using more particulate waste materials such as ash in the construction industry, but rather than producing the waste and waiting for a possible use to emerge, the waste is being upgraded to meet the requirements of users and what is required in terms of sustainable management. Contact was made to different producers of construction materials to outline the characteristics (chemical as well as physical) of the raw materials used, and which raw materials might potentially be substituted with an upgraded secondary raw material.

Upgrading by means of electrochemical extraction
At DTU Civil Engineering, a special method for upgrading ashes is under development – electrochemical extraction. The method stems from the earlier development of an electrodialytic method for removing heavy metals from soil. The major new step is that the method now embraces an overall separation method rather than solely a method for heavy metal removal. The focus is now on the characteristics of the treated matrix to optimise possibilities for use, as well as on recovering the removed resources (e.g. P, K and heavy metals).

The upgrading is based on separation in an applied electric DC field, which causes ions in the material to move according to their charge. The particulate material is treated in a suspension instead of consolidated as previously, and the new design allows faster treatment, better process control and a more homogenous material after the treatment. Moreover, it is a continuous process [1].

Ongoing research and some results
Process conditions for electrochemical extraction must be optimised for each ash type, but the method can be used for ashes in general. Major focus is presently on upgrading air pollution control residues from municipal solid waste incineration (MSW APC) and sewage sludge combustion ashes (SSA) to secondary resources (the Danish EPA recently financed two projects). MSWA APC residue is produced in large amounts and constitutes a huge problem when landfilled as it is chemically unstable. The mobile fraction of heavy metals and the easily soluble salts are removed during electrochemical extraction, which solves the leaching problem. A pilot plant was constructed for the electrochemical extraction [2], [3]. Treated ash was tested as a partial substitute for cement in Portland cement mortar [4], and the study showed potential for this use. The SSA contains a high concentration of phosphorus, an essential element which will become scarce in primary resources within the next century or so. The SSA may be a secondary resource of phosphorus, but separation from cadmium in the ash is necessary. Electrochemical extraction is a possibility for this separation [5], but phosphorus is not available directly from the ash. The phosphorus must be separated from the particulate ash, and possible uses of the remaining ash in mortar need to be tested.

Waste products
Electro- dialytic separation
Secondary resources for industrial use
Toxic compounds without industrial application
DTU Civil Engineering is internationally recognised for its research into Bridge Dynamics. The institute’s current research projects include the fatigue assessment of bridge cables, pedestrian-induced vibrations of footbridges, bridge icing, long-span bridge monitoring and the well-publicised understanding and control of bridge cable vibrations.

With international bridge stock numbers growing steadily, the understanding of their often complex dynamic behaviour is increasingly important. Cable-stayed bridges are a relatively new form of bridge introduced in the later half of the previous century and their cable fatigue resistance is not well understood.

Pedestrian-induced vibrations have gained prominence in recent years with the vibrations of several high-profile bridges. Unusual meteorological conditions have increased the risks of bridge icing, and bridge cable vibrations are becoming ever more difficult to control with the tendency for longer bridge spans.

CESDyn

With this in mind, a small research group was established to initiate research into bridge dynamics in early 2005. In 2007, the group expanded to examine the dynamic behaviour of other structures, and a year later the Civil Engineering Structural Dynamics Group (CESDyn) was born under the umbrella of the Section for Structural Engineering. The group now has nearly 15 members, made up of academics, PhD students and visiting professors and researchers, the majority of which focus their research on Bridge Dynamics.

Facilities and collaboration

In 2008, Femern A/S approved funding for a DTU Civil Engineering-led five-year collaborative research project on bridge cable vibrations. As part of this project, a new state-of-the-art climatic wind tunnel facility was built. The tunnel has been in operation for over a year now, and preliminary test results are proving exciting. Publications relating to these have already been prepared for several conferences in 2011.

Collaboration is strong with the Universities of Bristol, Stavanger and Reggio Calabria, whilst a new collaborative PhD project in fatigue risk assessment of bridge cables has been initiated with Stanford University. In 2010, DYWIDAG Systems International approached DTU Civil Engineering to propose joint research work into the assessment of bridge cable fatigue due to bending effects. The work has not only led to a novel preliminary bending fatigue spectrum for cables, but also to an Industrial PhD sponsored by ATKINS A/S. For this project, full-scale tests on bridge cable/anchorage assemblies have been proposed to be undertaken through a research agreement with the University of Texas, Austin.

2010 also saw the initiation of construction of a new 1.5m x 1.5m uni-axial shaking table facility for the dynamic testing of all types of structure. Tests in the areas of vibration control and pedestrian-induced footbridge vibrations are planned using the facility as early as mid-2011.

Results and future work

In contrast to most previous attempts by other prominent researchers in the field, DTU Civil Engineering’s recent work into the pedestrian-induced vibrations of footbridges has uncovered the dominant driving mechanism behind the Millennium Bridge vibrations of 2000 in the form of unsynchronised pedestrian-induced velocity-proportional forces. The large amplitude hanger vibrations on the Great Belt Bridge in 2001 have now largely been explained and mathematical models have been developed and experimentally verified to determine the likelihood of vibrations in future.

Tests are currently being undertaken to improve the aerodynamic performance of bridge cables through novel surface and shape modifications. Full-scale monitoring of both the Great Belt and Øresund Bridges has revealed interesting vibrations coupled with specific meteorological conditions. As part of this monitoring, new techniques are being developed to measure previously unquantifiable structural dynamic properties. Research continues on the fatigue assessment and icing of bridge cables.
Integration of sustainable construction processes in the Øresund Region

DTU Civil Engineering is leading the project, where information and communication technology is playing a significant role in changing construction processes and establishing the region as a single market.

The purpose of the Integration of sustainable construction processes project is to enhance the market and cooperation in the construction sector across the Øresund Region. The project is sponsored by the EU through the Interreg IV A Øresund programme, and the total budget for the project is EUR 1.7 million. The project started in September 2009 and will end in September 2012.

There are many similarities between the Danish and Swedish construction sectors, with many players working on both sides of the Sound. Despite this, it is not possible for the sector to benefit from the Øresund Region as a single market. This is due to differences in traditions and structures and differences between the national codes of practice. There is a pressing need for a regional network, and for common "interpreters" of the national systems for stakeholders in the construction sector to work together and to be able to work across the Øresund Region.

Better quality

The project combines the need for more sustainable construction processes, high productivity, better quality and the adoption of ICT solutions in the Øresund Region. In particular, the use of virtual building models, often referred to as Building Information Modeling (BIM), which can be used to visualise the building as well as provide input for programs that can simulate a wide range of factors such as comfort, structural behaviour, energy consumption, life cycle assessment, scheduling and the costing of a facility. BIM can be regarded as a database for storing information from construction projects from cradle to cradle.

DTU Civil Engineering is the leading player in the project, which is being carried out in collaboration with Lund University (LTH), Technical University of Denmark (DTU), Danish Building Research Institute (SBI) and Øresund Environment. The project is headed by Associate Professor Jan Karlshøj, who is also active in work packages regarding BIM guidelines and classification. Professor Svend Svendsen is leading the work package on verifying the national building code using BIM with the primary focus on energy-related issues. Søren Burchart, Head of Administration at DTU Civil Engineering, is responsible for the overall economy of the project. Several employees at the department are involved in the project e.g. PhD student Lies Vanhoutteghem, Associate Professor Flemming Vestergaard, Research Assistant Helle Juul Bak and Professor Carsten Rode.

Economic benefits

DTU Civil Engineering exploits its experiences from participating in the national Digital Construction programme, training and testing in its BIM Laboratory, identifying the economic benefits of using BIM and from participating in international standardisation through ISO and buildingSMART in the work package regarding BIM guidelines and classification. DTU Civil Engineering is also looking into how buildings can be evaluated in terms of access for disabled people.

Although both Denmark and Sweden are following the same basic energy requirements from the EU, implementation has been different in the two countries. DTU Civil Engineering is collaborating with Lund University on comparing the differences in the building code for new buildings and the retrofitting of buildings in Denmark and Sweden. The parties will identify how barriers can be removed for all work packages that prevent the Øresund Region from operating as an open market. The main goal of the project is to increase competitiveness in the region.

Website: www.baerebyg.org
The use of Building Information Modelling (BIM) is becoming more widespread and is increasingly being integrated with analytic software programs.

Illustration: Salam Saghdosh Pey

Results from the software-based evaluation of a building formation model in relation to access for the disabled. Illustration: Salam Saghdosh Pey
Isolation, excessive workload, poor work/life balance, lack of project planning and dissatisfaction with supervision: during a 2005 survey by DTU's PhD Association, these five issues were identified as being the main hurdles to completing PhD projects. These challenges are faced by most PhD students, and generally they manage to tackle the challenges based on their own technical and/or personal skills, or with help from their supervisors, colleagues, friends or family. Sometimes however, the solution to these challenges is not within easy reach, and PhD students may become stuck. Such a situation can easily give rise to frustration, hampering the PhD student professionally and personally.

In such instances, intervention with other PhD students may be the key. Intervention is a learning methodology in which professionals learn about professional issues from other professionals, by collective reflection on given problems. Intervention is being used in a wide range of professions, from financial managers and environmental workers to consultant engineers. In short, intervention is a methodical approach to tackling work-related problems with a small group of equals, the main objective being to improve the professional well-being of the people involved.

Pilot project
Given the potential benefits for our PhD students, the PhD School at DTU Civil Engineering initiated the pilot project “Intervision for PhD students” in the spring of 2010. With this pilot project, we wanted to evaluate the possible benefits of intervention for our PhD students and the PhD School. The project was coordinated by Associate Professor Hans Janssen, Deputy Manager of the PhD School, and facilitated by Mads Bendixen, work psychologist at Alectia and also a former PhD student at our department. Mads Bendixen had been working previously with intervention in Alectia, and his experience and expertise were greatly appreciated within this project.

Eighteen of our school’s PhD students participated, out of which three groups were formed. PhD students were gathered in groups, largely according to which stage the students had reached in their respective PhD projects. At each meeting, group members had the opportunity to raise an issue – for instance “improving my supervision meetings”. The correct understanding of the issue and possible ways of tackling it were first explored in a one-to-one interview. This was followed up by a discussion amongst the other group members. From talking to the interviewer to listening to the others and back provided the “focus person” with a deeper understanding of the challenge, and new inspiration to move forward. At each meeting, about three group members were able to raise an issue. In total, each group had four intervision meetings during 2010.

Permanent arrangement
At the end of the pilot project, the participating PhD students were asked for their opinions on “Intervision for PhD students” by means of a questionnaire. Almost everyone was satisfied with the pilot project and supported the continuation of the initiative. 80% of the students agreed that they had found “assistance in managing the challenges of PhD life”, which was the main aim of the intervention project. While not being a real objective, 40% of the students stated that the project had also helped in “improving the quality of my PhD project”.

Given these very positive outcomes, the PhD School at DTU Civil Engineering is continuing “Supervision for PhD students”, now in a more permanent format.

1: “Livet som ph.d.-studerende” (The PhD Association at DTU, February 2005)
Ventilation of spaces is essential for occupants’ health, comfort and performance. It is also a recognised method for decreasing the risk of airborne cross-infection. Present ventilation methods aim to dilute contaminated room air with large volumes of clean and conditioned outdoor air and thereby improve inhaled air quality (and to reduce the likelihood of inhaling pathogens). However, this strategy has several disadvantages: 1) it dilutes instead of removing the pollution at source; 2) supplying large volumes of clean air generates high velocity and increases the risk of draught discomfort; 3) conditioning and transporting large volumes of outdoor air for ventilating the entire room, including unoccupied areas, increases energy consumption; 4) initial and maintenance costs are high and more space is used inefficiently due to large air-handling units and duct systems; 5) ventilation rates/ventilation systems are designed based on occupants’ activities, reducing flexibility in terms of how the space is used (for example, in hospitals most rooms and corridors are not sufficiently well ventilated to be used in the event of a major influx of patients with communicable disease, such as during an influenza pandemic).

More efficient strategies for ventilation
A team of researchers and students at DTU Civil Engineering lead by Associate Professor Arsen Melikov has developed and studied more efficient strategies for ventilating office buildings, theatres, health care facilities and vehicle compartments. Unique experimental facilities, including breathing and coughing thermal manikins resembling occupants have been designed and used together with sophisticated measuring techniques.

Recently, a novel method for advanced ventilation in hospitals based on two important principles – source control and airflow control – was developed by the team. Two units, each consisting of a linear fan (with low energy consumption and low noise level), cleaning devices (HEPA/ULPA filters and UV light) and air distribution arrangements (slots and airflow guiding devices) are attached to the patient’s bed (Fig. 1). Polluted room air is drawn in and cleaned in one of the units and then discharged horizontally to guide the polluted exhaled/coughed air (can be infected!) from the patient in the bed so it is extracted through the suction opening of the second unit before being mixed with the room air. The air is cleaned in the device and then is either discharged upwards to an exhaust duct as an air curtain between the patient and the person standing beside the bed (as shown in Fig. 1) or is discharged into the room (thus the device cleans the room air), or it is recirculated through the two units. The method allows for flexibility in bed layout and space use. The “plug and operate” principle can be applied, i.e. patients in beds with Hospital Bed Integrated Ventilation and Cleaning Units (HBIVCU), as they are called, can be moved from one room to another together with their personal ventilation. The devices can be portable and easily attached to the beds. The method can be applied in infectious wards as well as in rooms with patients with non-infectious diseases. The units and the ventilation principle are in process of being patented.

Efficient method
Physical measurements in a full-scale test chamber simulating a hospital room with two patients and a standing doctor simulated by breathing and coughing thermal manikins performed together with Computational Fluid Dynamics (CFD) simulations (Fig. 2) confirmed that the method is efficient at improving indoor air quality and reducing the risk of airborne cross-infection in hospitals, both for medical staff (and visitors) as well as patients. Moreover, implementing the method in practice may also lead to substantial energy savings. The research is in progress.
Controlling flow interaction to ensure more clean air for occupants at reduced supply flow rates

The ‘PhD of the year at DTU Byg’ for 2010 is proudly awarded to Zhecho Dimitrov Bolashikov for his thesis ‘Advanced Methods for Air Distribution in Occupied Spaces for Reduced Risk from Air-Borne Diseases and Improved Air Quality’.

The assessment committee praised the high scientific quality of the work, combining experimental tests and numerical simulations. Full-scale measurements and CFD simulations of air flow around and thermal comfort of building occupants mutually supported each other. The assessment committee moreover applauded the research production resulting from his thesis: four papers are submitted to international journals, three of which are currently published. One of the developed ventilation solutions is furthermore currently being patented.

Figure 1. Vector velocity plot based on PIV measurements showing the direction of the flow at the breathing zone as a result of the interaction between the free convection and the PV flow supplied from the front to the face of a seated breathing thermal manikin: a) without control and b) with control. The control makes it possible for the PV air to reach the mouth and nose of the manikin. The breathing thermal manikin has a realistic body shape and closely resembles a human being at a state of thermal comfort. RMP stands for Round Movable Panel and is a desk-mounted PV device.
A PhD project at DTU Civil Engineering aims to develop novel methods for improving the performance of Personalized Ventilation by controlling the airflow interaction close to the human body. The new air-distribution control methods result in improved energy efficiency, more clean air, and reduced risk of airborne cross-infections.

Improved strategies

A PhD project with the objective of developing strategies for improving PV performance but at much lower air supply rates through controlling flow interaction close to the human body (face) was completed at DTU Civil Engineering. Computational Fluid Dynamics (CFD) simulations, Particle Image Velocimetry (PIV), breathing thermal manikins, tracer gas measurements etc. were used during the research (Fig. 1). Some of the strategies which have been developed are used for controlling the convection layer around the human body either by blocking it (a retractable board below the table pressing against the abdomen) or by exhausting it locally (PV incorporated into chair headrest with local suction above the shoulders) (Fig. 2). Other methods rely on controlling the PV flow itself: supplying the clean air very close to the body (mouth/nose) at significantly reduced volumes of clean air; at less than 0.4 L/s (headset microphone incorporated PV) (Fig. 2).

Improved energy efficiency

The control strategies studied are effective solutions for offices, cinemas, theatres, opera houses, public transport services etc. where occupant density is very high, as is the risk from airborne cross-infections. The benefits include improved energy efficiency through reduced supply flow rates, more clean air inhaled and increased contaminant (pathogen) removal effectiveness compared to conventional total volume ventilation systems used today or relative to situations where PV is used with no control (Fig. 3). The new strategies for controlling airflow interaction follow the future trends in ventilation and air handling: individually controlled environments at low energy cost with the flexibility and adaptability to satisfy the personal comfort needs of even the most demanding occupants.

Figure 2. Different control strategies and their application: a) Movable board installed below the desk to prevent/weaken the upcoming convection from legs moving upwards and thus making it possible for the personalised air flow (desk-installed PV unit) to reach the mouth/nose of the person; b) Headrest PV with installed local exhaust (1) to evacuate the upcoming convection and to make it possible to provide clean air at inhalation at low PV flow rates; c) Supplying clean air from a nozzle incorporated in a headset makes its performance independent of head movements.

Figure 3. Contaminant removal effectiveness (measure of how effective the ventilation principle used is at evacuating the contaminants (pathogens) away from the breathing zone of the occupant) of conventional ventilation distribution techniques compared to personalized ventilation on its own and with the control strategy applied.
Simulation of crack propagation in concrete structures

A better understanding of cracking processes in reinforced concrete structures leads to more reliable modelling and simulation of structural performance during the lifetime of the structures. The work is conducted by a research group within the Section for Structural Engineering.

Reinforced concrete is the most used structural material of all. Therefore, there is considerable economic interest in the safety and durability of concrete structures. Reinforced concrete cleverly exploits the individual strengths of the constituent materials, concrete and steel, to form economic structures, which explains their widespread use. Cracks in reinforced concrete structures are, however, inevitable. They are the price of the fruitful interaction between concrete and steel. Thus, activating the steel reinforcement is normally associated with the formation of cracks in the concrete. Fortunately, cracking concrete does not have a directly negative impact on the load-carrying capacity of the structure. Nevertheless, cracks should be controlled and their influence on structural behaviour should be foreseeable. In order to achieve this, detailed modelling and simulation of the cracking processes during the service-life of the structure is necessary.

A better understanding of cracking processes will allow for more reliable modelling and simulation of the structural performance of a structure during its lifetime. Here, the overall goal is to provide simulation tools capable of handling any complex reinforced concrete structure, and to give a detailed forecast of the state of the structure at any time during its predicted lifetime. The work is being conducted by a research group at the Section for Structural Engineering, which focuses on computational structural...
engineering, in particular the finite element modelling of crack propagation in concrete structures. (www.adm.dtu.dk/Subsites/CSE)

Material and numerical models

Cracking in itself is a mechanically degrading process which may develop throughout the lifetime of the structure; and the state of a structure is a function of its history, since loads and material properties vary with time. In some cases, cracks are detrimental to protecting the steel against corrosion. Corrosion of the steel reinforcement may be very critical, since this will jeopardise structural integrity. The ability to predict the structural performance is essential to the design engineer, and the better the tools that are available for this, the more economic the design. Such tools comprise material models as well as numerical models.

Today there is a lack of well-documented material models for describing the properties of the crack surfaces and their interaction. The challenge here is, on the one hand, to predict the behaviour of the crack when it has experienced various degrees of opening, sliding and closing, and to embed this into a mathematical model. On the other hand, experimentally measuring the fundamental physical properties and their degradation is not a trivial task. Interesting results have been achieved in a testing machine with custom-made modifications to allow for bi-axial loading and control. Further, a mathematical model has been developed, which in a subtle manner captures the characteristic features of a crack, taking into account the degradation of the surface roughness and the dependency of the opening, sliding and closing history. With this model for the crack, it has been possible to convincingly mimic the test results.

Numerical simulation of fracture processes in concrete structures poses yet another challenge. The proper handling of crack formation and development is a topic which has recently resulted in two distinct contributions, one with an appealingly simple concept, and one that is much more complicated but more efficient. They serve different purposes. Where the complicated approach is suited for detailed analysis of a few cracks, the simpler approach lends itself to large-scale analysis with a multitude of cracks. Simulation tools for overall structural analysis must be very efficient to be of any interest in the everyday design process. Therefore, the effect of cracking on the structural performance of structural members has been integrated into ordinary beam elements for use in finite element programmes. These elements allow for the modelling of reinforced concrete structures, taking into account the effect of cracks on the stiffness of the structure. Furthermore, this tool permits a precise prediction of the cracking in terms of crack spacing and crack width.
Emergency evacuation of mixed populations

An INTERREG project led by DTU Civil Engineering has provided rare and valuable data and results concerning the evacuation dynamics of children. Special evacuation models are required for children in order to keep them safe in case of fire.

New data

In 2010, the EU granted DKK 10 million to an INTERREG project led by DTU Civil Engineering. The project KESØ (Competence Center for Evacuation Safety in the Øresund Region) is a cooperation with the Department of Fire Safety Engineering and Systems Safety at Lund University, investigating the evacuation of complex buildings for heterogeneous populations. As a part of the project, experiments with tunnel evacuations have been carried out and experiments on the evacuation of high-rise buildings are planned. At the Technical University of Denmark (DTU), the focus is on describing heterogeneous populations. In order to map the movement parameters and evacuation characteristics of people with impairments as well as of children and young people, new data need to be collected and analysed.

Seven evacuation experiments with children and young people were carried out in autumn 2010, in collaboration with the fire authorities in the Municipality of Lyngby-Taarbæk. The experiments focused on the egress from primary and lower secondary schools of children and young people aged 6-15 years. The experiments were linked to full-scale fire drills carried out by the emergency services. By filming the course of action, data were collected on the flow of people in corridors and stairways as well as the pupils’ behaviour. Several models on evacuation are currently being validated using the data obtained.

Valuable results

Our research has provided rare and valuable data and results concerning the evacuation dynamics of children. So far, the findings show that existing evacuation theory and models cannot be directly transferred to children without further consideration. The evacuation velocity peaks at around the age of 10, where the children are keen to evacuate quickly and efficiently and have the physical and psychological ability to do so. Younger children move more slowly and with some hesitation, while older pupils seem to lack motivation to evacuate and are more sceptical about the situation. This was seen when observing movement through doors and down stairways, but also when observing the pupils’ initial response to the alarm.

More research is needed to develop models that describe the entire heterogeneous population and provide equal egress opportunities. As the KESØ project is a three-year project, the research continues with high expectations regarding the final outcome.

Background

Chapter 5 of the Danish building regulations demands safety for the occupants of a building in case of fire. Since Denmark introduced performance-based fire codes in 2004, it has become even more important to have a rational basis when designing buildings for evacuation. Nowadays, models are based on a normative and homogeneous description of people. In other words, heterogeneous groups, including people with disabilities, young people and children are poorly represented. At the same time, an increasing number of complex buildings, such as high-rise buildings and tunnels, are being built, buildings which are difficult to evacuate. New strategies are needed in order to keep people safe in these types of buildings.
New BSc in Architectural Engineering

DTU Civil Engineering is launching a new BSc in Architectural Engineering, starting in autumn 2011

Architectural engineering is the discipline of applying engineering knowledge from the very early stages of building design. It requires multi-disciplinary engineering skills, design skills and skills to work in an integrated way with other partners in the building design process, especially architects.

To achieve the goal of a sustainable future, buildings play a major role. Today, buildings account for 40% of total energy consumption in the EU, and a large amount of energy and other resources are also used during their construction. New buildings must be designed and existing buildings renovated with sustainability in mind from the very outset. Here, success requires that engineers influence and participate in the preliminary design stages by providing useful technical knowledge.

The goal of this BSc programme is to give engineers genuine design competencies, a good understanding of architecture and the latest research-based knowledge within the fields of building energy, building construction and sustainability assessment. The focus areas of the programme are design, energy, construction and sustainability. The goal is also to educate engineers who can initiate and drive the development of new, sustainable building materials, components and systems through a thorough understanding of the needs and technical possibilities.

Basic scientific courses

The BSc in Architectural Engineering is a three-year bachelor of science programme that gives direct access to the MSc in Architectural Engineering at DTU Civil Engineering. The study plan of the bachelor programme consists of mandatory and elective courses. The mandatory courses include basic scientific courses on mathematics, physics and chemistry and basic engineering courses on building energy, building construction and engineering design. Other mandatory elements are several project-based courses that include the final bachelor project. Elective courses constitute 25% of the study programme, and can be used by the students to define their own identity within the overall themes of the programme.

Interdisciplinary work

Engineering design is an important aspect of the study programme and is incorporated in the studies through theoretical courses on design and practical project experiences. During the studies, several design projects will require interdisciplinary work between the group of students on the programme, including cooperation with architectural students.

After completing the MSc programme, candidates will be able to work at all levels in the building industry, developing sustainable solutions from the individual materials, through building components and systems to the design of entire buildings. This could be in consulting companies, both traditional engineering consultancies and architectural consultancy firms, or companies producing building materials and building components.

The new BSc in Architectural Engineering aim to educate engineers with genuine design competences, a good understanding of architecture and the newest research based knowledge in the fields of building energy, building constructions and sustainability assessment. Photo: Mikkel Strange
Greenlandic mining waste as a raw material in construction materials

A PhD Study at the Arctic Technology Centre is currently investigating whether waste from the Greenlandic mining industry can be utilised in construction materials such as concrete, bricks or insulation materials.

PhD student Louise Josefine Belmonte
Section for Arctic Technology and Engineering Geology
lojon@byg.dtu.dk

The gold-bearing quartz veins (gold ore) in Nalunaq. The rock is blasted, crushed and treated chemically before the gold can be extracted. Photo: Louise Josefine Belmonte
The mining of natural resources is expected to be one of the leading industries in Greenland in future. The Greenlandic government is working hard to ensure that the Greenlandic people and the environment are major considerations in this development. In the mining industry, waste products of crushed and chemically treated rocks, also known as mine tailings, often pose a serious environmental problem. Greenland has already experienced environmental problems relating to mine tailings, for example from the Black Angel Pb-Zn mine in north-west Greenland, where a decision to discharge the tailings into a nearby fjord proved disastrous for the local marine environment. High concentrations of heavy metals are still observed in the area today, even though the mine closed down in 1990.

In today’s mining industry, mine tailings are usually stored at disposal facilities within the mining area and are continuously monitored with regard to their environmental impact. The storage and monitoring of the mine tailings are major concerns for the mining company. Currently, a lot of research projects worldwide are focusing on how to treat the mine tailings in order to neutralise their harmful effects.

Environmental and economical benefits

In this study we want to go a step further and investigate whether or not the waste can be reused for construction materials, for example as admixtures in concrete. Construction materials are usually expensive in Greenland because most are imported from other countries, especially from Denmark. Thus, introducing local materials, such as mine tailings, in construction materials could have both environmental and economic benefits for the Greenlandic community.

The overall aim of the PhD project is to characterise and test a wide range of resources, such as different types of waste products (mine tailings included as a resource of major importance) and natural resources, in order to determine their suitability for use in construction materials. The goal is to provide a manual that can be used to assess new resources. The manual should specify how to best characterise a new resource and determine what construction material (if any) could be produced from this resource.

Greenlandic mine tailings

Currently, only one mine is operating in Greenland: the Nalunaq Gold Mine in South Greenland, run by the British company Angel Mining plc. A cooperation has been established with the company, and in August 2010 PhD student Louise Belmonte visited the processing plant at Nalunaq. The visit provided an insight into the processing procedure, whereby the ore is crushed, chemically treated and gold is extracted. This procedure has a key bearing on the composition of the Nalunaq mine tailings.

Although only one mine is in operation at the moment, several mining projects exist, and these are likely to develop into actual mines within the next couple of years. One such project is the Tanbreez Project in South Greenland, where a large deposit of rare earth elements is being investigated in preparation for mining. At present, small-scale extraction has begun and “pilot tailings” are being produced, which will also be available for this project. Furthermore, as it is considered highly important to be at the forefront in terms of sustainable solutions for mine tailings, Louise Belmonte and supervisors Professor Arne Villumsen, Associate Professor Lisbeth M. Ottosen, researcher Pernille E. Jensen and Post doc. Gunvor Kirkelund, all from DTU Civil Engineering, hope to extend the study basis by establishing contact with other mining companies working in Greenland in the coming year.
Do our children have enough fresh air in their bedrooms?

The Indoor Environment group at DTU Civil Engineering measured the ventilation rate in the bedrooms of 500 children in Odense. One of the largest studies of its kind in the world reveals that the majority of Danish bedrooms are insufficiently well ventilated.

Increased energy costs have resulted in buildings being better sealed and reduced ventilation rates in homes since the early 1970s. More recently, the increased focus on global climate change has led to growing pressure to further reduce energy consumption in buildings. One way of doing so is to reduce heat loss from either natural or mechanical ventilation. However, low ventilation rates may result in increased concentrations of indoor-generated pollutants, which are associated with sick building syndrome symptoms and other comfort and health effects. Insufficient ventilation is suspected of being associated with the increase in allergic diseases among children. Moreover, low ventilation rates can be associated with increased indoor air humidity and thus a greater risk of dampness in dwellings, and of moulds and dust mite infestation.

So what are the ventilation rates in Danish homes? Surprisingly, we have very limited information about this. Two studies indicated that the outdoor ventilation rates in naturally ventilated dwellings were often lower than 0.5 air changes per hour, which has been the minimum required outdoor air change rate in the Danish building code for more than 20 years. These studies were done on a relatively small number of homes, built only in the mid-1980s.

During the last four years, DTU Civil Engineering has been involved in a large study looking at the impact of the indoor environment on asthma and allergy among children. The study is being carried out in collaboration with Odense University Hospital, the Municipality of Odense, Aarhus University, Karlstad University and SP, the Technical Research Institute of Sweden. The project is providing substantial new information on current ventilation practices among Danish families.

Methods

The first phase of the study was a questionnaire survey involving 11,082 families with children aged 1-5 years on Funen. The questionnaire addressed the health of the child, characteristics of the dwelling, the keeping of pets, food habits and the habits of the occupants in relation to e.g. cooking, washing and cleaning. A subset of 500 children in Odense aged 3-5 years was selected for a more detailed investigation of the indoor environment in their dwellings. Each of the 500 dwellings was visited by two inspectors, who completed a checklist of building characteristics. As part of the inspection, CO₂ concentrations in the children’s bedrooms were continuously measured over an average of 2.5 days. The night-time ventilation rates in the rooms when the children were sleeping were then calculated.
Results

The average air change rate in the 500 bedrooms was 0.62 air changes per hour. As Figure 1 illustrates, approximately 57% of all children slept at a lower ventilation rate than the minimum required ventilation rate of 0.5. The CO₂ concentration is a simple measure of how well an occupied room is ventilated. The indoor CO₂ concentration should not exceed 1000 ppm. Only 32% of bedrooms had an average CO₂ concentration below 1000 ppm during the measured nights. 23% of the rooms experienced at least a 20-minute period during the night when the CO₂ concentration was above 2000 ppm and 6% of the rooms experienced concentrations above 3000 ppm (see Figure 2).

Questionnaires distributed to the families, home inspections and interviews with the parents provided information about a broad range of residential characteristics and occupant behaviour. These data made it possible to construct a statistical model predicting the ventilation rate in a room. Some of the most important parameters influencing ventilation in homes were room volume (better ventilation in smaller rooms), the number of people sleeping in the bedroom (better ventilation with more people, see Figure 3), window and door-opening habits (better ventilation with more opening), sharing the bedroom with other family members (better ventilation in shared rooms), and year of construction of the dwelling (poorest ventilation in buildings from the early 1970s). The results further suggest that occupant behaviour influences ventilation rate to a much greater extent than parameters related to the building and its construction. While occupant behaviour was able to account for 30% in the variation of the measured ventilation rates, building-related parameters could only account for 9% in the variation, when such partial statistical models were built.

Discussion

The study shows that a large proportion of Danish children spend many hours every day in insufficiently ventilated rooms. The ventilation rate may be even lower when looking at the volume of air entering the measured room from outdoors, as opposed to the total ventilation rate including air entering the bedroom from neighbouring rooms. Other studies from around the world indicate that ventilation is a critical parameter in terms of the quality of the indoor environment and, in fact, the more fresh air the better – fewer indoor-generated pollutants and less moisture. Although saving energy is important, it should not compromise the health and well-being of our children and ourselves.
Low-temperature District Heating for Low-energy Buildings

DTU Civil Engineering is cooperating with Danish energy companies such as Danfoss, Logstor, COWI etc. as well as the Municipalities of Roskilde, Gladsax etc. to develop solutions with low-temperature district heating (LTDH) for low-energy buildings.
Low-temperature DH for future energy supplies

As the world-leading district heating (DH) country, more than 60% of homes in Denmark are supplied with heat from district heating. The high market penetration and the high degree of consumer connection poses challenges for future DH industry development, especially when Denmark achieves 100% fossil fuel independence in 2050, with all buildings turned into low energy buildings.

In order to remain economically competitive and realise long-term sustainable development, the design and operation of DH systems needs to be re-examined. This is the main driver for bringing forward the next generation DH concept.

In 2005, Professor Svend Svendsen from DTU Civil Engineering initiated the low-temperature district heating concept and started conducting research into analysing heat loss from DH pipelines. In 2009, a DH group was formed at DTU Civil Engineering, which included one professor, one senior researcher and three PhD students, with LTDH as the focus area of their research. The next generation DH system is based on low network heat loss due to low network supply temperature and small pipe dimensions, and will be capable of widely exploiting renewable heat including waste heat from incineration and industrial processes, central solar heating plants and geothermal heat.

The essence of LTDH involves reducing the network supply/return temperature to 50/22°C. Based on this concept, the network heat loss can be kept as low as 10-15% even when supplying heat to low energy buildings [1]. This concept has been implemented through an EUDP project carried out at Lærkehaven in Lystrup on Jutland to supply 40 low-energy houses (Fig. 1) [2]. Promising results have been achieved so far based on the field measurements.

Optimal DH system design

The new generation DH concept is stimulating both academic research and industrial product development. To provide an optimal solution for LTDH, it is necessary to implement various measures involving the DH network and the in-house substation to reduce pipeline heat losses, save on DH network installation and operational costs, and provide economical comfort and hygienic space heating and domestic hot water supply.

Distribution heat loss is one of the key factors affecting the operating economy of the DH supplier. To reduce heat loss, the branch pipe which connects the DH network to the house should be designed as small as possible with respect to capacity. For this purpose, a new Alu-fl ex twin pipe with an inner diameter of as little as 10 mm was developed and used for the Lystrup project (Fig. 2) [3]. Related research to investigate the temperature-dependent thermal conductivity of PUR insulation and different pipe design with a triple service pipe has been conducted [4].

The design of the DH distribution pipeline can adopt the same philosophy as that used in the design of branch piping. The maximum allowable network pressure drop should be exploited for each street in a DH network. Booster pumps can be applied to further reduce the pipeline size. To reduce the bypass flow rate in summer, the thermal bypass temperature at the critical user should be set lower than the current standard. The bypass water can be cooled off through additional heating load such as bathroom floor heating in the summer.

Two types of in-house substations have been applied in the LTDH concept including a DH storage tank and instantaneous heat exchanger (IHE). Due to the reduced operating temperature difference, a new type of heat exchanger with an enhanced heat transfer rate was developed (Fig. 3) [5]. The traditional domestic hot water storage tank was redesigned as a DH storage tank to avoid problems with legionella (Fig. 4) [5]. Due to the reduced network supply temperature and the elimination of water recirculation, the dynamic of the in-house substation becomes important and the related issues have been investigated [6].

References
Publications

Journal papers
-ISI-indexed-

Alam, Mohammad Monzurul; Borre, Mai Kirstine; Fabricius, Ida Lykke; Hedegaard, Kathrine; Regen, Birthe; Hossain, Zakir; Krogsbøll, Anette Susanne
Biot’s coefficient as an indicator of strength and porosity reduction: Calcareous sediments from Kerguelen Plateau

Andreassen, Katrine Alling; Fabricius, Ida Lykke
Biot Critical Frequency Applied to Description of Failure and Yield of Highly Porous Chalk with Different Pore Fluids

Appelfeld, David; Hansen, Christian Skodborg; Svendsen, Svend
Development of a slim window frame made of glass fibre reinforced polyester

Bache, Anja Margrethe
Glazed Concrete : Development of Large Scale Ceramic Glazed Concrete

Bean, R; Olesen, Bjarne W.; Kim, K. W.
History of Radiant Heating & Cooling Systems : Part 2

Bean, Robert; Olesen, Bjarne W.; Kim, Kwang Woo
History of Radiant Heating & Cooling Systems : Part 1

Bekö, Gabriel; Lund, Toste; Nors, Fredrik; Toftum, Jørn; Clausen, Geo
Ventilation rates in the bedrooms of 500 Danish children

Bekö, Gabriel; Lund, Torben; Nors, F.; Toftum, Jørn; Clausen, Geo
Ventilation rates in the bedrooms of 500 Danish children

Bin, Yang; Sekhar, S.C.; Melkov, Arsen Krikor
Ceiling-mounted personalized ventilation system integrated with a secondary air distribution system - a human response study in hot and humid climate

Bolashikov, Zhecho Dimitrov; Melkov, Arsen Krikor; Kronek, M.
Control of the Free Convective Flow around the Human Body for Enhanced Inhaled Air Quality: Application to a Seat-Occupied Personalized Ventilation Unit

Causone, Francesco; Olesen, Bjarne W.; Corgnati, Stefano P.
Floor Heating with Displacement Ventilation: An Experimental and Numerical Analysis

Causone, Francesco; Filippi, Marco; Olesen, Bjarne W.
Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

Causone, Francesco; Baldin, Fabio; Olesen, Bjarne W.; Corgnati, Stefano
Floor heating and cooling combined with displacement ventilation: Possibilities and limitations

The Thermal State of Permafrost in the Nordic Area during Internationnal Polar Year 2007-2009

The Thermal State of Permafrost in the Nordic Area during International Polar Year 2007-2009

Davidsson, Henrik; Perers, Bengt
Performance of a multifunctional PV/T hybrid solar window

Dederichs, Anne; Karlschaj, Jan; Hertz, Kristian Dahl
Multidisciplinary teaching – Engineeringcourse in advanced building design
In: Journal of Professional Issues in Engineering Education and Practice (2010). American Society of Civil Engineers. Type: Journal article

Dovjak, Mateja; Shukuya, Masanori; Olesen, Bjarne W.; Krainer, Ales
Analysis on exergy consumption patterns for space heating in Slovenian buildings

Engelund, Emil Tang; Thygesen, Lisbeth Garbrecht; Hoffmeyer, Preben
Water sorption in wood and modified wood at high values of relative humidity : Part 2: Appendix. Theoretical assessment of the amount of capillary water in wood microvoids

Engelund, Emil Tang; Svensson, Staffan
Modelling time-dependent mechanical behaviour of softwood using deformation kinetics
In: Holzforschung (2010). Walter/de Gruyter GmbH & Co. KG. Type: Journal article

Gutiérrez, Claudia; Hansen, Henrik K.; Nuñez, Patricio; Jensen, Pernille Erland; Ottesen, Lisbeth M.
Electrochemical peroxidation as a tool to remove arsenic and copper from smelter wastewater

Hallier, M.Y.; Yazdanshenas, Eshagh; Andersen, Elsa; Bales, C.; Streicher, W.; Furbo, Simon
A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses
Haller, Michel; Yazdanshenas, Eshagh; Andersen, Elsa; Bales, Chris; Streicher, Wolfgang; Furbo, Simon
A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses.
Type: Journal article

Halvonova, Barbara; Melikov, Arsen Krikor
Performance of ‘ductless’ personalized ventilation in conjunction with displacement ventilation: Impact of intake height
Type: Journal article

Halvonova, Barbara; Melikov, Arsen Krikor
Performance of ‘ductless’ personalized ventilation in conjunction with Displacement Ventilation: Impact of Workstations Layout and Partitions
Type: Journal article

Halvonova, Barbara; Melikov, Arsen Krikor
Performance of ‘ductless’ personalized ventilation in conjunction with displacement ventilation: Impact of disturbances due to walking person(s)
Type: Journal article

Hansen, H.K.; Ottosen, Lisbeth M.
Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment
Type: Journal article

Hatwaambo, Sylvester; Perers, Bengt; Karlsson, Björn
Projected beam irradiation at low latitudes using Meteonorm database
Type: Journal article

Holme, J.; Hagerhed-Engman, L.; Mattsson, J.; Sundell, Jan; Bornehag, Carl-Gustaf
Culturable mold in indoor air and its association with moisture-related problems and asthma and allergy among Swedish children
Type: Journal article

Hozjan, Tomaz; Svensson, Staffan
Theoretical analysis of moisture transport in wood as an open porous hygroscopic material
In: Holzforschung, vol: 64 (2010). Walter/de Gruyter GmbH & Co. KG
Type: Journal article

Janssen, Hans
Adaptive Kronrod-Patterson integration of non-linear finite-element matrices
Type: Journal article

Jensen, Pernille Erland; Ferreira, Célia M. D.; Hansen, Henrik K.; Rype, Jens Ulrik; Ottosen, Lisbeth M.; Villumsen, Arne
Electroremediaion of air pollution control residues in a continuous reactor
Type: Journal article

Johannesson, Björn
Development of a Generalized Version of the Poisson-Nernst-Planck Equations Using the Hybrid Mixture Theory: Presentation of 2D Numerical Examples
Type: Journal article

Johannesson, Björn
Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures
Type: Journal article

Johannesson, Björn
Comparison between the Gauss’ law method and the zero current method to calculate multi-species ionic diffusion in saturated uncharged porous materials
Type: Journal article

Johannesson, Björn; Nyman, U.
A Numerical Approach for Non-Linear Moisture Flow in Porous Materials with Account to Sorption Hysteresis
Type: Journal article

Jornaas, Grunde; Law, Chung K.
Observation and regime classification of pulsation patterns in expanding spherical flames
Type: Journal article

Jungerstedt, J.; Helligren, Lars; Drachmann,Tue; Hegh, Julie Kaae; Jemec, GBE; Agner, T
Ceramides and barrier function in healthy skin
Type: Journal article

K, Han; J, S, Zhang; Wargocki, Paweł; H, N, Knudsen; B, Guo
Determination of material emission signatures by PTR-MS and their correlations with odor assessments by human subjects
Type: Journal article

Kaczmarczyk, J.; Melikov, Arsen Krikor; Silva, D.
Effect of warm air supplied facially on occupants’ comfort
Type: Journal article

Karlsson, Henrik
Embedded water-based surface heating part 2: experimental validation
Type: Journal article

Kim, K.W.; Olesen, Bjarne W.
Special Issue: Ventilation for Better Productivity, Comfort and Health (Roomvent Conference 2009)
Type: Journal article

Kim, Kwang woo; Olesen, Bjarne W.
Editorial in the "Buildings and Environment “ journal
Type: Editorial Material

Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne
Investigations of Cu, Pb and Zn partitioning by sequential extraction in harbour sediments after electrodialytic remediation
Type: Journal article

Kirkelund, Gunvor Marie; Jensen, Pernille Erland; Villumsen, Arne; Ottosen, Lisbeth M.
Test of electrodialytic upgrading of MSW APC residue in pilot scale: focus on reduced metal and salt leaching
Type: Journal article

Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt
Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings
Type: Journal article

Kolarik, Barbara; Wargocki, Paweł; Skorek-Osiakowska, A.; Wisthaler, A.
The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods
Type: Journal article
Schellen, Lisje; Lichtenbelt, Wouter van Marken; Loomans, Marcel; Toftum, Jørn; de Wit, M.H.
Differences between young adults and elderly in thermal comfort, productivity and thermal physiology in response to a moderate temperature drift

Schiavon, S; Melikov, Arsen Krikor; Sekhar, C.
Energy analysis of the personalized ventilation system in hot and humid climates
Type: Journal article

Schmidt, Jacob Wittrup; Bennitz, Anders; Tålstén, Björn; Pedersen, Henning
Development of Mechanical Anchor for CFRP Tendons Using Integrated Sleeve
Type: Journal article

Shokouhi, Parisa; Zoega, Andreas; Wiggenhauser, Herbert; Fischer, Gregor
Macro-effect of Microcracks on Sonic Wave Velocity of Concrete under Compression
In: Transportation Research Record (2010). Type: Journal article

Simone, Angela; Kolarik, Jakub; Iwamatsu, Toshiya; Asada, Hideo; Doujak, Mateja; Schellen, Lisje; Shukuya, Masanori; Olesen, Bjarne W.
A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation
Type: Journal article

Skocek, Jan
Application of optical deformation analysis system on wedge splitting test and its inverse analysis
Type: Journal article

Skwarczynski, Mariusz; Melikov, Arsen Krikor; Kaczmarczyk, J.; Lyubenova, V.
Impact of individually controlled facially applied air movement on perceived air quality at high humidity
Type: Journal article

Thygesen, Lisbeth Garbrecht; Engelund, Emil Tang; Hoffmeyer, Preben
Water sorption in wood and modified wood at high values of relative humidity: Part I: Results for untreated, acetylated, and furfurylated Norway spruce
Type: Journal article

Weschler, Charles J.; Nazaroff, W. W.
SVOC partitioning between the gas phase and settled dust indoors
Type: Journal article

Yang, B; Sekhar, C; Melikov, Arsen Krikor
Ceiling mounted personalized ventilation system in hot and humid climate: An energy analysis
Type: Journal article

Zivanovic, Stana; Pavic, Aleksandar; Ingolfsson, Einar Thor
Modeling Spatially Unrestricted Pedestrian Traffic on Footbridges
Type: Journal article

Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor
Determination of the integral characteristics of an asymmetrical thermal plume from air speed/velocity and temperature measurements
Type: Journal article

Hasholt, Marianne Tange; Clemmensen, Line Katrine Harder
Investigating salt frost scaling by using statistical methods
Type: Journal article

Hougaard, Karin S; Jackson, Petra; Jensen, Keld A; Sloth, Jens Jørgen; Løschner, Katrin; Larsen, Erik Huisfeldt; Birkedal, Renie K.; Vibenbølt, Anni; Boisen, Anne Mette Zenner; Wallin, Håkan; Vogel, Ulla Birgitte
Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan).
A study in mice
In: Particle and Fibre Toxicology, vol: 7, Article no. 16 (2010). BioMed Central Ltd.
Type: Journal article

Koss, Holger; Georgakis, Christos; Larsen, Søren V.
Bridge Cables - and Wind, Rain, Ice and Snow
Type: Journal article

Nærgaard, Jørgen; Ragnarsdóttir, Kristín Vala; Peet, John
The History of the Limits to Growth
Type: Journal article

Oroz, Katalin; Blanksvaerd, Thomas; Tålstén, Björn; Fischer, Gregor
From Material Level to Structural Use of Mineral-Based Composites - An Overview
In: Advances in Civil Engineering (2010). Type: Journal article

Journal papers
- Peer Reviewed
Journal articles
- Popular

Bache, Anja Margrethe
Glazed Concrete : Development of Large Scale Ceramic Glazed Concrete

Bekö, Gabriel
Ventilation filters may pollute the indoor air: Part 2 – economic impact and solutions

Clausen, Geo; Bekö, Gabriel; Toftum, Jørn
Indeklima og børns sundhed
In: HVAC Magasinet, p. 28-30 (2010). Techmedia Type: Article in newsletter

Clausen, Geo; Bekö, Gabriel; Toftum, Jørn
Indeklima og børns sundhed
In: HVAC Magasinet, vol: 46(6), p. 28-30 (2010). TechMedia A/S Type: Journal article

Fritt-Rasmussen, Janne; Villumsen, Arne; Brandvik, Per Johan; Stenby, Erling Halfdan
Ilæn på havet
In: Aktuel Naturvidenskab, p. 6-9 (2010). Type: Journal article

Hvid, Christian Anker
One-mode hybrid ventilation til lavenergiebygninger
In: HVAC Magasinet, vol: 12, p. 22-30 (2010). TechMedia Type: Journal article

Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Pedersen, Anne Juul
Opgradering af farligt røggasaffald

Nørgaard, Jørgen
Dum satsning på uøkonomisk vækst (Stupid aim at un-economic growth) : Onder og Goder (Bads and Goods)

Nørgaard, Jørgen
Opgiv den u-økonomiske vækst (Abandon the un-economic growth)

Nørgaard, Jørgen
Derailling the growth debate

Toftum, Jørn; Bekö, Gabriel; Clausen, Geo
Indeklima i danske boliger og daginstitutioner

Toftum, Jørn; Kolarik, Jakub; Olesen, Bjarne W.
Komfort, symptomer og præstation med varierende temperaturer
In: HVAC Magasinet, p. 36-57 (2010). Techmedia Type: Article in newsletter

Toftum, Jørn
Ny REHVA anvisning om skolers indeklima og energieffektivitet
In: HVAC Magasinet, p. 10-11 (2010). Techmedia Type: Article in newsletter

Books

Fischer, Gregor; Geiker, Mette Rica; Hedelal, Ole; Ottosen, Lisbeth M.; Stang, Henrik
8th fib International PhD Symposium in Civil Engineering : Proceedings. Type: Book

Jensen, Ole Mejilhede; H SHOPort, Marianne Tange; Laustsen, Sara
Use of Superabsorbent Polymers and Other New Additives in Concrete. - Lyngby : DTU Byg, 2010 (p. 329). Type: Book

Tommerup, Henrik M.
Strategi for udvikling af lavenergilojser til eksisterende byggeri
In: BYG Sagsrapport : SR 10-02. Type: Book

Book Chapters

Fuglsang, Leif D; Krogsbøll, Anette Susanne
Jordtryk
In: Eksempelsamling til Lærebog i Geoteknik : dfg-bulletin 22 / Editor: Thøgersen, Lotte - Aalborg : Dansk Geoteknisk Forening, 2010 (89-96 p.). Type: Book chapter

Jensen, Ole Mejilhede; Mechtcherine, Viktor; Reinhardt, Hans-Wolf
Preface
In: Use of Superabsorbent Polymers and Other New Additives in Concrete - Lyngby : DTU-Byg, 2010 (XIII-XIV p.). Type: Book chapter

Meyer, Niels I
New Systems Thinking and Policy Means for Sustainable Energy Development
In: Sustainable Energy - Vienna : Intech open access publisher, 2010 (40-54 p.). Type: Book chapter

Olesen, Bjarne W.
Was kühle Boden wirklich können
Conference papers - Peer Reviewed

Andersen, Elsa; Dragsted, Janne; Furbo, Simon; Perers, Bengt; Fan, Jianhua
Thermal advantage of tracking solar collectors under Danish weather conditions
Presented at: Eurosun 2010, Graz, Austria, 2010 - Graz, Austria, 2010
Type: Conference paper published in book/proceeding

Andreassen, Katrine Alling; Fabricius, Ida Lykke
Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures
Type: Conference paper published in book/proceeding

Andreassen, Katrine Alling; Fabricius, Ida Lykke
Water weakening of chalk explained from a fluid-solid friction factor
In: Rock Mechanics in the Nordic Countries 2010 ; Proceedings-DVD : (26-35 p.)
Type: Conference paper published in book/proceeding

Angrimson, Hallgrimur O.; Gunnarsson, Thorri B.; Foged, Niels; Nielsen; Erlingsson, Sigurdur
Numerical analysis of rock support strategy for the Budarhals Tunnel
In: Rock mechanics in the Nordic countries 2010 ; 2010 (36-45 p.)
Type: Conference paper published in book/proceeding

Bache, Anja Margrethe
Large scale glazed : A dialogue with architecture
Presented at: Colour & Light in Architecture. Venice, 2010
In: Colour & Light in Architecture : International conference venice 11-12 november 2010 : (314-319 p.)
Type: Conference paper published in book/proceeding

Bagger, Anne; Hertz, Kristian Dahl
Structural behaviour of super-light structures
Presented at: International Symposium of the International Association of Shell and Spatial Structures (IASS). Shanghai, China, 2010
In: Spacial Structures - Temporary and Permanent : Proceedings International Symposium of the International Association of Shell and Spatial Structures (IASS) - Shanghai, China : China Architecture & Building Press, 2010 (2697-2708 p.)
Type: Conference paper published in book/proceeding

Behrendt, Benjamin; Olesen, Bjørn W.
Thermische behaglichkeit und energieaufwand bei flächenheizungen in bürogebäuden
Presented at: BauSim 2010. September 22 - 24, Vienna University of Technology, 2010
In: BAUSIM 2010 : 2010
Type: Conference paper published in book/proceeding

Belmonte, Louise Josefine; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne
Use of clay from kangerlussuaq in the Greenlandic construction industry
In: Rock mechanics in the Nordic countries 2010 : , 2010 (66-73 p.)
Type: Conference paper published in book/proceeding

Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Kierat, W.; Popiolek, Z.
Exposure of health care workers to coughed airborne pathogens in a hospital room with overhead mixing ventilation: impact of the ventilation rate and the distance downstream from the coughing patient
In: Proceedings of ASHRAE IAQ 2010, Article no. 126 ; 2010
Type: Conference paper published in book/proceeding

Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend
Performance of low-temperature district heating for low-energy houses
Presented at: The future for sustainable built environments with high performance energy systems, 2010
In: The future for sustainable built environments with high performance energy systems : ; 2010 (174-183 p.)
Type: Conference paper published in book/proceeding

Brand, Marek; Thorsen, Jan Eric; Svendsen, Svend
A Direct Heat Exchanger Unit used for Domestic Hot Water Supply in a Single-family House Supplied by Low Energy District Heating
In: Proceedings of 12th International Symposium on District Heating and Cooling (60-68 p.)
Type: Conference paper published in book/proceeding

Brandvik, Per Johan; Fritt-Rasmussen, Janne; Reed, Mark; Bodsberg, Nils Rune
Predicting ignitability for in situ burning of oil spills as a function of oil type and weathering degree
Presented at: Predicting ignitability for in situ burning of oil spills as a function of oil type and weathering degree. Halifax, Canada, 2010
Type: Conference paper published in book/proceeding

Brandvik, Per Johan; Fritt-Rasmussen, Janne; Daniloff, Roger; Leivvik, Frode
Using a small scale laboratory burning cell to measure ignitability for in situ burning of oil spills as a function of weathering
Presented at: Using a small scale laboratory burning cell to measure ignitability for in situ burning of oil spills as a function of weathering. Halifax, Canada, 2010
Type: Conference paper published in book/proceeding

Budny, Iwona; Giuliani, Luisa
A comparison between prescriptive- and performance-based approaches in fire safety design of structures
Presented at: Handlig Exception. Rome, Italy, 2010
Type: Conference paper published in book/proceeding

Christensen, Jørgen Erik; Janssen, Hans; Tognolo, Barbara
Hygrothermal performance optimisation of a museum storage building
Presented at: Buildings XI, 2010
Type: Conference paper published in book/proceeding

Croceli, Roberto; Gustafsson, Per Johan; Danielsson, Henrik; Emilsson, Arne; Ormansson, Sigurdur
Experimental and numerical investigation on the shear strength of glulam

Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend
Steady-state heat losses in pipes for low-energy district heating
Burford, Simon; Dragsted, Janne; Chen, Ziqian; Fan, Jianhua; Andersen, Elsa; Perers, Bengt
Towards seasonal heat storage based on stable super cooling of sodium acetate trihydrate
Presented at: EuroSun 2010 Congress. Graz, Austria, 2010
In: EuroSun 2010 Congress Proceedings ; , 2010
Type: Conference paper published in book/proceeding

Garcia, Juan Manuel Paz; Johanssenn, Björn; Ottosen, Lisbeth M.; Rodriguez-Maroto, José Miguel; Ribeiro, Alexandra B.
Modeling of Electrokinetic Processes Using the Nernst-Plank-Poisson System
Presented at: 8th fib international PhD Symposium in Civil Engineering. Kgs. Lyngby, Denmark, 2010
In: 8th fib international PhD Symposium in Civil Engineering - 1 ed. ; , 2010 (449-454 p.)
Type: Conference paper published in book/proceeding

Garcia, Juan Manuel Paz; Johanssenn, Björn; Ottosen, Lisbeth M.
Modeling of the Ionic Multi-Species Transport Phenomena in Electrokinetic Processes and Comparison with Experimental Results
Presented at: The 9th Symposium in Electrokinetic Remediation. Kaohsiung, Taiwan, 2010
In: Scientific Advances and Innovative Applications in Electrokinetic Remediation / Editor: Yang, Gordon C.C. - Taiwan, 2010 (69-70 p.)
Type: Conference paper published in book/proceeding

Gentili, Filippo; Crosti, Chiara; Giuliani, Luisa
Performance based investigations of structural systems under fire
Type: Conference paper published in book/proceeding

Giuliani, Luisa; Budny, Iwona
Different approaches of European regulations for fire design of steel structural elements
Presented at: 4th International conference on Structural Engineering, Mechanics and Computation. Cape Town, South Africa., 2010
Type: Conference paper published in book/proceeding

Giuliani, Luisa; Bonfempi, Franco
Structural Robustness Evaluation of Offshore Wind Turbines
In: 12th Biennial ASCE International Conference on Engineering, Construction, and Operations in Challenging Environments (Earth and Space 2010) ; , 2010
Type: Conference paper published in book/proceeding

Hansen, Christian Skodborg; Stang, Henrik; Schmidt, Jacob Wittrup
Analysis of Balanced Double Lap Joints with a Bilinear Softening Adhesive
Presented at: Fracture Mechanics of Concrete and Concrete Structures, 2010
In: Fracture Mechanics of Concrete and Concrete Structures : Assessment, Durability, Monitoring and Retrofitting of Concrete Structures / Editor: Oh, B. H. - Korea Concrete Institute, 2010
Type: Conference paper published in book/proceeding

Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejhede
Mechanical properties of Concrete with SAP. Part I: Development of compressive strength
Presented at: Use of Superabsorbent Polymers and Other New Additives in Concrete. Lyngby, Denmark, 2010
Type: Conference paper published in book/proceeding

Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejhede
Mechanical properties of concrete with SAP. Part II: Modulus of elasticity
Presented at: Use of Superabsorbent Polymers and Other New Additives in Concrete. Lyngby, Denmark, 2010
Type: Conference paper published in book/proceeding
Mougaard, Jens Falkenskov; Poulsen, Peter Noe; Nielsen, Leif Otto
Modelling Cohesive Crack Growth applying XFEM with Crack Geometry Parameters
Presented at: Computational Modelling of Concrete Structures. Rohrmoos/Schladming, Austria, 2010
In: Computational Modelling of Concrete Structures ; , 2010
Type: Conference paper published in book/proceeding

Mualla, Imad H; Jakupsson, Eydbjarn; Nielsen, Leif Otto
Structural behaviour of 5000 kN damper
Presented at: Structural Behaviour of 5000 kN Damper, 2010
In: Proceedings of European Conference on Earthquake Engineering ;, 2010
Type: Conference paper published in book/proceeding

Nielsen, Hans Rasmus; Jørgensen, Anders Stur; Ingeman-Niels, Thomas
Dust Prevention and Low-Volume Road Construction in South Greenland
Presented at: International Symposium on Cold Region Development. Yakutsk, Sakha Republic, Russia, 2010
In: ISCOrd 2010 : Materials of the IX International Symposium on Cold Regions Development June 1-5, 2010 ;, 2010 (138 p.)
Type: Conference paper published in book/proceeding Note

Nielsen, Jens Henrik; Olesen, John Forbes
Post-crack capacity of mechanically reinforced glass beams (MRGB)
Presented at: Fracture Mechanics of Concrete and Concrete Structures. Jeju island, Korea, 2010
In: Fracture Mechanics of Concrete and Concrete Structures : Recent Advances in Fracture Mechanics of Concrete - Seoul, 2010 (370-376 p.)
Type: Conference paper published in book/proceeding

Olesen, Bjarne W.
Why specify indoor environmental criteria as categories
Presented at: The Windsor Conference : Cumberland Lodge, Windsor, UK, 2010
Type: Conference paper published in book/proceeding

Olesen, Bjarne W.; Simone, Angela; Zarpellon, Stefano; Causone, Francesco; De Carli, Michele
Experimental study of air distribution and ventilation effectiveness in a room with mechanical ventilation and floor heating/cooling systems
Presented at: Clima 2010 congress - 10th REHVA World Congress “Sustainable Energy Use in Buildings” : Proceedings on CDRom ;
Type: Conference paper published in book/proceeding

Olesen, Bjarne W.; Simone, Angela; Zarpellon, Stefano; Causone, Francesco; De Carli, Michele
Experimental study of air distribution and ventilation effectiveness in a room with mechanical ventilation and floor heating/cooling systems
Presented at: clima 2010. Turkey, 2010
In: Clima 2010 : Congress : 10th REHVA World Congress “Sustainable Energy Use in Buildings” ;
Type: Conference paper published in book/proceeding

Olesen, John Forbes; Poulsen, Peter Noe
Stress-compatible embedded cohesive crack in CST element
Presented at: Fracture Mechanics of Concrete and Concrete Structures. Jeju, Korea, 2010
In: Fracture Mechanics of Concrete and Concrete Structures ; Volume 1, Part 3 - Seoul, Korea : Korea Concrete Institute, Seoul, 2010 (586-591 p.)
Type: Conference paper published in book/proceeding

Ormås, Sigurdur; Dahblom, O.; Nygaard, M. J.
Finite Element Simulation of Mechanical and Moisture-Related Stresses in Laterally Loaded Multi-Dowel Timber Connections
Presented at: World Conference on Timber Engineering. Riva del Garda, Trentino, Italy, 2010
In: WCTE - World Conference on Timber Engineering 2010 : Conference Proceeding ; III : (671-672 p.)
Type: Conference paper published in book/proceeding

Ottosen, Lisbeth M.; Ferreira, Celia; Christensen, Iben Vernegren
Electrokinetic desalination of glazed ceramic tiles : Preliminary results
In: International Seminar Conservation of glazed ceramic tiles : research and practice ; CD : Springer Verlag, 2010 (1161-1171 p.)
Type: Conference paper published in book/proceeding

Pereira, Eduardo; Fischer, Gregor; Barros, J. A.O.; Lepech, Michael
Crack formation and tensile stress-crack opening behavior of Fiber Reinforced Cementitious Composites (FRCC)
Presented at: 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS 7), 2010
In: 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS 7) ;, 2010
Type: Conference paper published in book/proceeding

Perers, Bengt; Furbo, Simon; Andersen, Elsa; Fan, Jianhua
Solar Electric heating systems using smart solar tanks and variable electricity costs
Presented at: Eurosun 2010, 2009
In: Eurosun 2010 ;, 2010
Type: Conference paper published in book/proceeding

Perers, Bengt; Furbo, Simon; Andersen, Elsa; Fan, Jianhua
The covariation of heating load and solar energy production with the electricity price variations in Denmark
Presented at: Eurosun 2010, 2010
In: Eurosun 2010 : Book of proceedings ;, 2010
Type: Conference paper published in book/proceeding

Petersen, Gry; Ottosen, Lisbeth M.; Jensen, Pernille Erland
The possibility for using electrokinetics for desalination of sandstone with low porosity
Presented at: 8th fib International PhD Symposium in Civil Engineering. Kgs. Lyngby, Denmark, 2010
In: Proceedings – 8th fib International PhD Symposium in Civil Engineering ;, 2010 (455-460 p.)
Type: Conference paper published in book/proceeding

Petersen, Helena; Perers, Bengt; Carlson, Bo; Olsson, Per; Hjort, Åke
Test plant and development of tools for design of combi-heating systems for large buildings
Presented at: Eurosun 2010, 2010
In: Eurosun 2010 : Book of proceedings ;, 2010
Type: Conference paper published in book/proceeding

Petersen, Rasmus Storgaard; Dederichs, Anne
Self ignition of biomass : – a statistical study
Presented at: International fire prevention symposium. Leipzig, Germany, 2010
In: Proceedings of International fire prevention symposium ;, 2010
Type: Conference paper published in book/proceeding

Poulsen, Peter Noe; Olesen, John Forbes
A simplified XFEM approach for local enrichment
Presented at: 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Jeju, Korea, 2010
In: Fracture Mechanics of Concrete and Concrete Structures : Recent Advances in Fracture Mechanics of Concrete ; 1 / Editor: Oh, Byung Hwan : Korea Concrete Institute, Seoul, 2010
Type: Conference paper published in book/proceeding

Psarropoulos, Prodomos; Zania, Varvara; Spyraikos, Konstantinos; Anagnostaki, Anna; Pateniots, Pantelis
Designing strip footing foundations using expanded polystyrene (EPS) as fill material
Presented at: 6th hellenic conference on geotechnical and geoenvironmental engineering. Volos, Greece, 2010
In: 6th hellenic conference on geotechnical and geoenvironmental engineering : volume 3, Article no. 230203 :
Type: Conference paper published in book/proceeding Note
Ricciardelli, Francesco; Georgakis, Christos
The new DTU/Force Technology climatic wind tunnel: design, construction and calibration
Presented at: IN-VENTO 2010. Spoleto, Italy, 2010
In: IN-VENTO 2010: 11th Italian National Conference on Wind Engineering ; 2010
Type: Conference paper published in book/proceeding

Röög-Dalgaard, Inge
Electrochemical NaCl extraction from brick+lime mortar - design of the used historical lime mortar
Presented at: Eighth International Masonry Conference. Dresden, Germany, 2010
In: Masonry (11) : Proceedings of the Eighth International Masonry Conference ; 1 , 2010 (375-382 p.)
Type: Conference paper published in book/proceeding

Sekhar, C.; Li, R.; Melikow, Arsen Kríkor
Use of Heat-pipe for Energy Efficiency Improvement of Personalized Ventilation System Combined with Under-Floor Air Distribution
System in a Hot and Humid Climate
Presented at: CLIMA 2010. Antalya, Turkey, 2010
In: Proceedings of CLIMA 2010, Article no. R5-T533-OP06 :
Type: Conference paper published in book/proceeding

Simone, Angela; Kolarik, Jakub; Iwamatsu, Toshiya; Asada, Hideo; Doujak, Mateja; Schellen, Lisje; Shukuya, Masanori; Olesen, Bjarne W.
An investigation on the assessed thermal sensation and human body exergy consumption rate
Presented at: Clima 2010. Antalya, Turkey, 2010
In: Proceedings of Clima 2010 congress : 10th REHVA World Congress 'Sustainable Energy Use in Buildings' ; Proceedings on CD-ROM ; 2010
Type: Conference paper published in book/proceeding

Simone, Angela; Rode, Carsten; Olesen, Bjarne W.
Temperature distribution monitoring and analysis at different heating control points
In: Indoor Climate of Buildings 2010 : Indoor Environment, Energy Auditing and certification of buildings ; , 2010
Type: Conference paper published in book/proceeding

Simone, Angela; Olesen, Bjarne W.; Krajcič, Michal; Hansen, Jesper / Vartou
Experimental study of air distribution and ventilation effectiveness in a room heated by warm air and/or floor heating
Presented at: Clima 2010. Antalya, Turkey, 2010
In: Clima 2010 : , 2010
Type: Conference paper published in book/proceeding

Solgaard, Anders Ole Stubbe; Michel, Alexander
Numerical modeling of cracking of concrete due to corrosion of reinforcement - Impact of cover thickness and concrete toughness
Presented at: 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2010
In: Proceedings of the 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures : Type: Conference paper published in book/proceeding

Solgaard, Anders Ole Stubbe; Stang, Henrik
Application of Fibre Reinforced Concrete in Civil Infrastructure
Presented at: 8th fib International PhD Symposium in Civil Engineering, 2010
In: Proceedings of the 8th fib International PhD Symposium in Civil Engineering : Type: Conference paper published in book/proceeding

Solgaard, Anders Ole Stubbe; Kütfer, André; Edvardsen, Carola; Stang, Henrik; Geiker, Mette Rica
Durability aspects of steel fibre reinforced concrete in civil infrastructure
Presented at: 2nd International Symposium on Service Life Design for Infrastructures, 2010

Spangenberg, Jan; Rousseau, N.; Hattel, Jesper Henri; Thorborg, Jesper; Geiker, Mette Rica; Stang, Henrik; Skocek, Jan
Prediction of the impact of flow induced homogeneities in Self Compacting Concrete (SCC)
Presented at: International RILEM symposium on Self-Compacting Concrete. Montreal, Quebec, 2010
Type: Conference paper published in book/proceeding

Stekens, Paul Wilhelms Maria Hermanus; Janssen, Hans; Rode, Carsten
Modeling local hygrothermal interactions
Presented at: Buildings XI, 2010
Type: Conference paper published in book/proceeding

Subires-Muñoz, José Diego; García-Rubio, Ana; Vereda-Alonso, Carlos; Gómez-Lahoz, César; Rodríguez-Maroto, José Miguel; García-Herruzo, Francisco; García, Juan Manuel Paz
Feasibility Study of the Use of Thioulate as Extractant Agent in the Electrokinetic Remediation of a Soil Contaminated by Mercury from Almadén
Presented at: The 9th Symposium in Electrokinetic Remediation. Kaohsiung, Taiwan, 2010
In: Scientific Advances and Innovative Applications in Electrokinetic Remediation - Kaohsiung, Taiwan, 2010 (37-38 p.)
Type: Conference paper published in book/proceeding

Tommerup, Henrik M.; Vanhoutteghem, Lies; Svendsen, Svend; Palho, Satu; Ala-Jussela, Mia; Mahapatra, Krushna; Gustavsson, Leif; Haavik, Trond; Aabrekken, Synnøve Elisabeth
Existing sustainable renovation concepts for single-family houses
Presented at: SB 10 Finland - September 22-24, 2010, 2010
In: SB 10 Finland : Sustainable Community - buildingsSMART - Hel sinki, 2010 (160-161 p.)
Type: Conference paper published in book/proceeding

Tzavara, Ioanna; Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos
Seismic response of reinforced soil slopes
Presented at: 6th hellenic conference on geotechnical and geoenvironmental engineering. Volos, Greece, 2010
In: 6th hellenic conference on geotechnical and geoenvironmental engineering ; volume 2, Article no. 230205 :
Type: Conference paper published in book/proceeding Note

Villumsen, Arne; Belmome, Louise Josephine; Hinrichsen, Hans
Aspects of Rock Mechanics in Greenland
Type: Conference paper published in book/proceeding

Villumsen, Arne; Jacobsen, Kasper Rannow; Villumsen, Ole
Bæredygtig energiforsyning - hvad vælger Grønland
Presented at: Energiforsyning i Arktis - hvilken vej vælger Grønland. Fyrtårnsprojekt III - afsluttende rapport 2009
In: Energiforsyning i Arktis - hvilken vej vælger Grønland ; 6 - 1 ed. - Sisimiut, Grønland, 2010
Type: Conference paper published in book/proceeding

Villumsen, Arne; Jacobsen, Kasper Rannow; Nielsen, Morten Holtegaard; Dragsted, Jannke; Larsen, Esben; Hansen, Kurt Schaldemose
Feartårnsprojekt III - afsluttende rapport 2009
Presented at: Energiforsyning i Arktis - hvilken vej vælger Grønland. Fyrtårnsprojekt III - afsluttende rapport 2009
In: Energiforsyning i Arktis - hvilken vej vælger Grønland ; 6 - 1 ed. - Sisimiut, Grønland : DTU Byg, 2010 (59-60 p.)
Type: Conference paper published in book/proceeding

Villumsen, Arne; Jacobsen, Kasper Rannow; Nielsen, Morten Holtegaard; Dragsted, Jannke; Larsen, Esben; Hansen, Kurt Schaldemose
Feartårnsprojekt III - afsluttende rapport 2009
Presented at: Energiforsyning i Arktis - hvilken vej vælger Grønland. Fyrtårnsprojekt III - afsluttende rapport 2009
In: Energiforsyning i Arktis - hvilken vej vælger Grønland ; 6 - 1 ed. - Sisimiut, Grønland : DTU Byg, 2010 (61-103 p.)
Type: Conference paper published in book/proceeding

Yazdanshenas, Eshagh; Furbo, Simon; Fan, Jianhua
CFD calculations and PIV measurements on tank-in-tank heat storage
Presented at: EuroSun 2010 Congress. Graz, Austria, 2010
In: EuroSun 2010 Congress Proceedings ; 2010
Type: Conference paper published in book/proceeding

Yazdanshenas, Eshagh; Furbo, Simon; Fan, Jianhua
CFD calculations and PIV measurements on tank-in-tank heat storage
Presented at: EuroSun 2010 Congress. Graz, Austria, 2010
In: EuroSun 2010 Congress Proceedings ; 2010
Type: Conference paper published in book/proceeding
Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos; Bouckovalas, George
Mitigation measures for soil embankments against fault rupture using geosynthetics
Presented at: 6th hellenic conference on geotechnical and geoenvironmental engineering. Volos, Greece, 2010
In: 6th hellenic conference on geotechnical and geoenvironmental engineering ; volume 2, Article no. 230204 ;
Type: Conference paper published in book/proceeding Note

Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos
Simulating the seismic behaviour of soil slopes and embankments
Presented at: 6th hellenic conference on geotechnical and geoenvironmental engineering. Volos, Greece, 2010
In: 6th hellenic conference on geotechnical and geoenvironmental engineering ; volume 1, Article no. 230201 ;
Type: Conference paper published in book/proceeding Note

Zivanovic, Stana; Ingolfsson, Einar Thór; Pavic, Aleksandar; Gudmundsson, Gudmundur Valur
Experimental Investigation of Reykjavik City Footbridge
Presented at: IMAC XXVIII A Conference and Exposition on Structural Dynamics. Florida, USA, 2010
In: IMAC XXVIII A Conference and Exposition on Structural Dynamics ; , 2010
Type: Conference paper published in book/proceeding

Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor
Impact of boundary conditions on the development of the thermal plume above a sitting human body
Presented at: The10th REHVA World Congress "Sustainable Energy Use in Buildings". Antalya, Turkey, 2010
In: Proceedings of the 10th REHVA World Congress "Sustainable Energy Use in Buildings" : Clima 2010 - Antalya, Turkey, 2010
(Paper R7-TSSS-PP05 p.)
Type: Conference paper published in book/proceeding

Chen, Ziqian; Dragsted, Janne; Furbo, Simon; Perers, Bengt
Theoretical Study on a solar collector loop during stagnation
Presented at: EuroSun 2010. Graz, Austria, 2010
Type: Conference paper published in book/proceeding

Chen, Ziqian; Dragsted, Janne; Furbo, Simon; Perers, Bengt
Theoretical Study on a solar collector loop during stagnation
Presented at: EuroSun 2010. Graz, Austria, 2010
Type: Conference contribution, Poster presentation

Christensen, Jørgen Erik; Janssen, Hans
Passive hygrothermal control of a museum storage building in Vejle. - Kongens Lyngby, 2010 (p. 35)
In: Report R-220. Type: Report

Dederichs, Anne; Karlsch, Jan; Hertz, Kristian Dahl
A case study on collaboration within multidisciplinary teamwork.
Type: Conference paper published in journal

Dragsted, Janne; Furbo, Simon; Perers, Bengt; Chen, Ziqian
Solfragferkreds med stor ekspansionsbehoder og fordampning i solfanger ved faretruende høje temperaturer til sikring af solfangervæsk og anlæg. Type: Report

Furbo, Simon; Fan, Jianhua
Investigations on small low flow SDHW systems with different solar pumps and solar collector loops. - Department of Civil Engineering, Technical University of Denmark, 2010 ; SR-10-05. Type: Report

Garcia, Juan Manuel Paz; Johansson, Björn; Ottosen, Lisbeth M.
Numerical Simulations of Electrokinetic Processes Comparing the Use of a Constant Voltage Difference or a Constant Current as Driving Force
Presented at: Conference on Electrochemical Science and Technology. At the Technical University of Denmark, 2010
Type: Conference contribution, Poster presentation

Jensen, Ole Meijhede; Metchcherine, Viktor; Reinhardt, Hans-Wolf Preface
In: Use of Superabsorbent Polymers and Other New Additives in Concrete - Lyngby : DTU-Byg, 2010 (XII-XIV p.). Type: Book chapter

Jensen, Søren Østergaard; Andersen, Philip Hvidthaft Delff; Heerup, Christian; Larsen, Søren; Olsen, Lars; Toftum, Jørn; Trombe, Pierre-Julien
Characterization and optimized control by means of multi-parameter controllers. - Danish Technological Institute, 2010 (p. 276)
Type: Report

Jørgensen, Marianne Willemoes; Bollwerk, Sandra; Villumsen, Arne
Biogas and bio-oil from fishing waste in Uummannaq, Greenland
Presented at: Arctic energy supply - which way will Greenland choose?. Sisimiut, Greenland, 2010
In: Nordic Conference on Arctic Energy Supply - which way will Greenland choose?. - Department of Civil Engineering, Technical University of Denmark, 2010 ; SR-10-05. Type: Report

Kjærbye, Per Oluf H
Danish precast 2010- components, joints and project
Presented at: Noteworthy Developments in Precasting and Prestressing, 2010
In: Noteworthy Developments in Precasting and Prestressing ; . 2010 (41-54 p.)
Type: Conference paper published in book/proceeding

Nørgaard, Jørgen
Characterization and optimized control by means of multi-parameter controllers. - Danish Technological Institute, 2010 (p. 276)
Type: Report

Jørgensen, Marianne Willemoes; Bollwerk, Sandra; Villumsen, Arne
Biogas and bio-oil from fishing waste in Uummannaq, Greenland
Presented at: Nordic Conference on Arctic Energy Supply - which way will Greenland choose?. Sisimiut, Greenland, 2010
In: Nordic Conference on Arctic Energy Supply - which way will Greenland choose?. - Department of Civil Engineering, Technical University of Denmark, 2010 ; SR-10-05. Type: Report

Perers, Bengt; Chen, Ziqian
Theoretical Study on a solar collector loop during stagnation
Presented at: EuroSun 2010. Graz, Austria, 2010
Type: Conference paper published in book/proceeding

Olesen, Bjarne W.
Was kühle Böden wirklich können
Type: Conference paper published in journal
Ploug, Johan; Lykke-Andersen, Holger; Nielsen, Morten Holtegaard
Sediment structures in Kangerlussuaq [Sdr. Strømfjord], West Greenland: A preliminary study of the deposition and erosion of sediments and slide structures
Presented at: International Polar Year Closing Symposium. Copenhagen, 2010. Type: Conference contribution, Poster presentation

Rode, Carsten; Vladyková, Petra; Kotol, Martin
Air Tightness and Energy Performance of an Arctic Low-Energy House
Presented at: International Symposium on Building and Ductwork Airtightness. DTU, Kgs. Lyngby/Copenhagen, Denmark, 2010
In: Proceedings of the 5th International Symposium on Building and Ductwork Air-tightness : Energie und Umweltzentrum am Deister GmbH (e.a.[J.]), 2010
Type: Conference paper published in book/proceeding

Rode, Carsten
Lavenerghuset i Sisimiut 5 år
Type: Journal article

Sun, Tian Ran
The Electrodialytic Remediation of Soil Fines in Suspension and Comparison with Original Soil
Presented at: 15th International Conference on Heavy Metals in the Environment. Gdańsk, Poland, 2010
In: Proceedings: 15th International Conference on Heavy Metals in the Environment ., 2010
Type: Conference paper published in book/proceeding

Toftum, Jørn
Air pollution from residential wood combustion in a Danish village : Indoor-outdoor measurements
Type: Report

Wylyon, David Peter; Wargocki, Pawel; Toftum, Jørn; Clausen, Geo
Classroom ventilation must be improved for better health and learning
Type: Journal article

Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos
Assessment of earthquake hazards on waste landfills
Presented at: SECED · Young Engineers Conference - 2010. London, 2010
Type: Conference contribution, Poster presentation

PhD Theses

Bagger, Anne
Plate shell structures of glass : Studies leading to guidelines for structural design. - Kgs. Lyngby, Denmark : Technical University of Denmark (DTU), 2010 (p. 122) Type: PhD Thesis

Bolashikov, Zhecho Dimitrov
Protection of Occupants from Airborne Transmission of Infectious Agents by Advanced Air Distribution Systems. - Kgs. Lyngby, Denmark : Technical University of Denmark (DTU), 2010
Type: PhD Thesis

Hviid, Christian Anker

Pease, Bradley Justin

Yazdanshenas, Eshagh

Skoczek, Jan
Martins Zaumanis
Warm Mix Asphalt Investigation
Ole Hededaal, Jan M. Hansen, Erik Olesen (ex)

Lise Nygaard Jensen
Energiøgigt renovering af typehus i Grønland
Søren Peter Bjøløv, Carsten Rode

Martina Marencozkova
Renovering af grønlanske typehus
Søren Peter Bjøløv, Petra Vladkyova

Antoine Deblais Thomas Urbanas
Flange Curling of Steel Sections. Jeppe Jonsson

Johan Haberie
Social Housing Renovation in France. Svend Svendsen

Adam Targowski
Effekten af luftrense på luftkvaliteten. Pawel Wargocki, Lei Fang

Olaya Valle Garcia
Undersøgelse af anvendelse af papirisolering i boliger i Grønland
S.P. Bjøløv, Arne Villumsen, Carsten Rode

Søren Marienlund Andersen
Stibro over Københavns havn. Henning Agerskov

Káre Dige Brandrup, Jacob Ettrup Petersen
Perklædearmering. Kristian Hertz, Anne Bagger

Emanuil Georgiev
Advanced Air Distribution in Rooms. Arsen Melikov

Joanna Pogorzelska
Characterisation of Transient flow of Coughing
Arsen Melikov, Zbigniew Poliolec (ext)

Joanna Spletsteser
Thermal Plume above Sitting Person - Impact of Breathing and Posture
Arsen Melikov, Zbigniew Poliolec (ext)

Thomas Blok
3D modellering af Offshore monopæle i ler. Ole Hededaal

Ask Tonsgaard Andersen
Development of Energy Efficient Window-Wall Assembly
Svend Svendsen

Peder Christian Tange Nørgaard
Varme- og fugttransport beregninger med COMSOL
Carsten Rode

Robert Andrezj Cybulski
Thin-weld Shear Beam Statics and Stability
Leif Otto Nielsen, Jeppe Jonsson

Helga Sveinbjörnsdóir
Lifetime prediction for Steel Structures under Stochastic Wind Loading
Holger Koss, Christos Georgakis

Coralie Le Vaillant
Development of a Method and a Tool to carry out Feasibility Studies for Energy Performance of Buildings. Svend Svendsen

Miki Kobayshi, Eydjórn Dal Jakupsson
Determination of Vibration Comfort and Dynamic Characteristics of the Redovre Building. Holger Koss

Mads Højmark Jensen
Numerisk og eksperimentel undersøgelse af tyndpladesamlinger i trækonstruktioner. Sigurður Ormarsson

Michael Julsbo Nygaard
Numerical Simulation of timber Connections with Slotted -in Steel Plates
Sigurður Ormarsson

Jan Vig Nielsen
Rehabilitering af betonbroer. Per goltermann, Erik Stoklund Larsen (ex)

Madara Bérzina
Luftstrømme mellem rum i boliger. Toke Rammer Nielsen

Anne Loik Jensen
Ventilationsanlæg med lavt elforbrug. Svend Svendsen, Søren Terkildsen

Christian Jøns Nielsen, Jesper Jøns Nielsen
Solvarmeanlæg til svømmebade. Simon Furbo, Elsa Andersen

Morten Borre Møller Nielsen
Solvarmeanlæg til svømmebade. Simon Furbo, Elsa Andersen

Péter Szabó
Michell Truss based Concrete Beam Elements
Henrik Almegaaer Got Gøltermann

Tomáš Mikeska
Development and Analysis of low Temperature District Heating Network for Low Energy Buildings. Svend Svendsen

Pierre Bois

Iwona Barbara Budny
Fire Safety Design of Steel Structures. Luisa Giuliani

Mads Mønsker Jensen
Porosity and Transport Properties of Cement Based Materials
Mette Geiker

Iwona Barbara Budny
Fire Safety Design of Steel Structures. Luisa Giuliani

Mads Mønsker Jensen
Porosity and Transport Properties of Cement Based Materials
Mette Geiker

Dorte Partov
Indoor Environment in Kindergardens. Geo Clausen, Jørn Toftum

Hans Hvidt Gundtoft
Ligevæg kurver for fugt i faste stoffer- hysteresefænomener og temperaturafhængighed. Carsten Rode, Kurt Kielsgaard Hansen

Morten Kamuk Tafdrup
Energirenovering af ældre etageboligejendomme. Svend Svendsen

Gabriele Molinaro
Reduced Energy Consumption for Ventilation in Buildings by Integrated desicant Air Cleaning and Air conditioning. Lei Fang

Mads Mønsker Jensen
Porosity and Transport Properties of Cement Based Materials
Mette Geiker

Veilina Lyubenova
Development of Recommendations for Comfortable and Energy Efficient Personalized Ventilation. Arsen K. Melikov

Christian Møller Nielsen
Moment Stiff Connections in Glued Laminated Timber
Sigurður Ormarsson, Christian Ronne

Jacob Ettrup Petersen, Káre Dige Brandrup
Design and manufacturing of super-light structures. Kristian Hertz

Jan Pawel Winkler, Agnieszka Maria Kotas
Fatigue Analysis of Steel Cabins under Bending Load
Gregor Fischer, Christos Georgakis

Ricardo Barana, Alessandro Borini
Thermal Environments in Kitchens. Bjarne W. Olesen, Angela Simone

Anna Jona Kjartansdottir
Method for economical optimization used in integrated design of low energy buildings. Svend Svendsen
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan Walid Chaachouh</td>
<td>Energi- og komfortdesign af danske boliger via mellemøstlig tankegang</td>
</tr>
<tr>
<td>Mikkala Capral Henriksen</td>
<td>Solafskærmning til lavt boligbyggeri. Svend Svendsen, Anja Bache</td>
</tr>
<tr>
<td>Elisabet Køber</td>
<td>Metoder til uddannelse af solenergi og nedbringelse af energiforbruget i bygninger. Toke Rammer Nielsen</td>
</tr>
<tr>
<td>Majbritt Lorenzen</td>
<td>Diplom Bygningsdesign/s 052914.pdf. Svend Svendsen</td>
</tr>
<tr>
<td>Mariusz Mach</td>
<td>Et moderne CO2-neutralt familiehus. Søren Bjørav, Per Kjærby (ex)</td>
</tr>
<tr>
<td>Jacob Bjørnager Elholm</td>
<td>Design of Coastal Dike - a Case Study of Proposed Dike at Gniben Near Sjællands Odde. Ole Hededal, Christoffer Truelsen (ex)</td>
</tr>
<tr>
<td>Mie Them Andersen, Amir El-Khattam</td>
<td>Undersøgelse af forskellige eksperimenteringsmiljøer under frostprøvning af to typer kalksten. Kurt Kielsgaard Hansen, Bent Grelk (ex)</td>
</tr>
<tr>
<td>Rikke Fogelstrøm Lindquist, Christel Jeanty Nielsen</td>
<td>Saltnedbrydning af sandsten og elektrokemisk saltferning. Lisbeth M. Ottosen</td>
</tr>
<tr>
<td>Ronni Jensen, Claus Jørgen Andersen</td>
<td>Indflydelse af fugt og chlorid på impedansen af stålfiberarmeret beton. Mette Geiker, Anders Ole Stubbe Solgaard</td>
</tr>
<tr>
<td>Emil Brønd, Daniel Halberg</td>
<td>Søns bæreevne i fugtprøver. Søren Traberg, Sigurdur Ormarsson</td>
</tr>
<tr>
<td>Mark Dannemand</td>
<td>Sæsonvarmelagring. Simon Furbo, Lise Juel-Hansen</td>
</tr>
<tr>
<td>Hans Peter Pavia Skifte Lennert Salman Saghdosh</td>
<td>Vedligeholdelse og stabilisering af grønlandsk grusveje. Anders Stahr Jørgensen, Arne Villumsen</td>
</tr>
<tr>
<td>Victor August Aalund-Olsen, Miriam Ann Hellmann</td>
<td>Subjektive og objektive vurderingsteknikker af byrumskvalitet. Holger Kos, Jakob R S-A, Sta Kilkman (ex)</td>
</tr>
<tr>
<td>Hanne Bebe Madsen, Jakob Ernst Malmqvist</td>
<td>Energienøgler af skole til lavenergniveau. Svend Svendsen, Diana Lauritsen</td>
</tr>
<tr>
<td>Kenneth Zollfrank Gustavsen</td>
<td>Buer i porotherm blokmur. Henrik Almegaard</td>
</tr>
<tr>
<td>Lars Peter Pavia Skifte Lennert Salman Saghdosh</td>
<td>Vedligeholdelse og stabilisering af grønlandsk grusveje. Anders Stahr Jørgensen, Arne Villumsen</td>
</tr>
<tr>
<td>Elisabeth Køber</td>
<td>Facaderenovering af Højbjerg Vænge. Toke Rammer Nielsen, Teresa Surzycka</td>
</tr>
<tr>
<td>Søren Andersen, Tobias Ørstrøm Poulsen</td>
<td>Præfabrikerede boliger til københavnske tAGE. Teresa Surzyck, Bo Christensen (ex)</td>
</tr>
<tr>
<td>Steffan Hansen, Jeppe Ankjær Gøransson</td>
<td>Nul energi trippedhuis. Toke Rammer Nielsen</td>
</tr>
<tr>
<td>Daniel Løvborg, Stig Poreprikke Eriksen</td>
<td>Integreret design af solafskærmning af danske boliger. Svend Svendsen, Flemming Vesterborg</td>
</tr>
<tr>
<td>Christina Charlotte Jensen</td>
<td>Progammeder detaljerings af geometrien i facetterede skaller. Hans Peter Nielsen, Henrik Almegaard</td>
</tr>
<tr>
<td>Mohammad Koravand Takhtsby, Reza Masroori Yazdi</td>
<td>Smaart Structures Withstanding Natural Forces. Lotte Bjerregaard, Imad Muella (ex)</td>
</tr>
</tbody>
</table>
Publications 2010

Sanne Hansen
Undersøgelse af metoder til effektmåling af DDB
Fleming Vestergaard

Panerak Olsen, Anne Birgitte Marie Pedersen
Projektering af vandkraft i Grønland
Morten Holtegaard Nielsen, Egil Borchersen

Camilla Julie Jacobsen
Design af ventilerede regnskærme til småhuse
Anja Bache, Svend Svendsen

Mette Risager
Udvikling af designløsninger til AE-processen inden for dagslys i bygninger
Svend Svendsen

Mikkala Caprål Henriksen
Solafskærmning til lavt boligbyggeri. Svend Svendsen, Anja Bache

Darije Arnautovic Mohsan Ali
Design og Mechanical Ventilation for Single Family Houses
Toke Rammer Nielsen

Morten Filskov Knudsen, Anne Sofie Lorentzen
Energigrenovering af typehus. Svend Svendsen

Julie Wolff Wetterstein
Altankonstruktioner. Per Oluf Kjærbye, Per Goltermann

Moussa Achariau
Projektering af kontorbygning i Hillerød (Monkeengen)
Per Oluf Kjærbye, Per Goltermann

Lasse Brandt
Dynamiske vindueussyss. Svend Svendsen, Martin Vraa Nielsen

Daniela Anahi Fernandez Sveegaard, Sabina Hougaard Brammer
Elektrochemisk saltfjernelse fra porøse byggeomaterialer med fokus på historiske portugisiske kakler. Lisbeth M. Ottosen, Iben V. Christensen

Julie Højlund Christiansen, Nina Maria Schacht Olesen
Elektrochemisk in-situ imprægnering af trepløyering under København
Lisbeth M. Ottosen, Iben V. Christensen

Lasse Åkerström, Louise Benneboe Olsen
Måling af fugtindhold i historisk murværk
Kurt Kielsgaard, Björn Johansson, Poul Klenz Larsen (ex)

Rasmus Jenlar Andreas Houlberg Kristiansen
Betons mikrostruktur og egenskaber før og efter opvarmning til høje temperaturer
Björn Johansson, Kurt Kielsgaard, Kristian Hertz, Bent Grelk (ex)

Heidi Serup, Charlotte Rask Jensen
Undersøgelse af flyveaske fra affaldsforbrænding til anvendelse i mærtel. Arne Villumsen

Jesper Bruun Krogh, Peter Bo Sarka
Klimaændringeres betydning for vejdata til bygningsenergi simuleringer. Carsten Rode

Michael Cucarella Petersen, Søren Caspersen
FEM-modellering af stålhotte i betondækk ved brand
John Forbes Olesen, Jens Henrik Nielsen

Rasmus Pilgaard Jensen
Analyse af lavenerghus Sisimiut. Carsten Rode

Jesper Bjergregaard, Igor Blagojevic
Dimensionering af fabrikshal. Henning Agerskov, Jesper Gath (ex)

Georgios Hansen
Ekspertilment studie af tidsafhængige deformationer i træ
Staffan Svensson, Emil T. Engelund

Cherina Najarak Gunnlaugsdottir, Anna Wraa
Anlægning af spildevandsanlæg i Sisimiut. Arne Villumsen

BSc theses

Sanne Hansen
Undersøgelse af metoder til effektmåling af DDB
Fleming Vestergaard

Daniel Brauner Clausen, Dalibor Radivojca
Brudmekanik for stålberameret beton (SFRC)
Henrik Stang, Anders Solgaard

Ryle Nørskov Geij
Freshwater impact on a marine environment
Morten Holtegaard Nielsen

Fie Blasen
Undersøgelse af dæk og loft er med køle- og ventilations egenskaber
Svend Svendsen, Chr. Anker Hviid

Concorde Mugisha
Fire Resistance of Fibre Reinforced Concrete. Gregor Fischer

Lawrence Ronald Damien Henry Hannerz
Development of a Tree Point Bending Technique to Measure Fracture Energy in Concrete
Bjørn Johannesson

Mira Frello Hansen
Beregningsregler for betonsøjler. Per Goltermann

Jakob Ottesen Thiesson, Maiken Bruun-Ringgaard
Analyse af hærdningsforløbet i fuger af luftkalkmørtel
Per Goltermann, Anders Nielsen, Lars Zenke Hansen (ex)

Mette Veith Schroeder
Rumvarmeanlæg med lave rumtemperaturer
Svend Svendsen, Marek Brand

Pernille Jensen
Saltets nedbrydende effekt på inhomogene sandsten og elektrokemisk saltfjernelse
Lisbeth M. Ottosen, Iben V. Christensen

Sverri Løksagard Absalonsen
Hydratisering og udtørring af nystøbt cementpasta i kuldioxidfrit miljø
Björn Johannesson, Kurt Kielsgaard

Kasper Sørensen
Undersøgelse af beregningsmetoder til bestemmelse af varmetabet fra bygninger. Carsten Rode

Ulrik Muurholm Hansen, Sebastian Andersen
Udvikling af kontinuum baseret skal-element til laminerede konstruktioner. John Forbes Olesen, Peter Noe Poulsen

Mette Risager
Udvikling af designløsninger til AE-processen inden for dagslys i bygninger
Svend Svendsen, Martin Vraa Nielsen

Moussa Achariau
Design og Mechanical Ventilation for Single Family Houses
Toke Rammer Nielsen

Lasse Brandt
Dynamiske vindueussyss. Svend Svendsen, Martin Vraa Nielsen

Daniela Anahi Fernandez Sveegaard, Sabina Hougaard Brammer
Elektrochemisk saltfjernelse fra porøse byggeomaterialer med fokus på historiske portugisiske kakler. Lisbeth M. Ottosen, Iben V. Christensen

Julie Højlund Christiansen, Nina Maria Schacht Olesen
Elektrochemisk in-situ imprægnering af trepløyering under København
Lisbeth M. Ottosen, Iben V. Christensen

Lasse Åkerström, Louise Benneboe Olsen
Måling af fugtindhold i historisk murværk
Kurt Kielsgaard, Björn Johansson, Poul Klenz Larsen (ex)

Rasmus Jenlar Andreas Houlberg Kristiansen
Betons mikrostruktur og egenskaber før og efter opvarmning til høje temperaturer
Björn Johansson, Kurt Kielsgaard, Kristian Hertz, Bent Grelk (ex)

Heidi Serup, Charlotte Rask Jensen
Undersøgelse af flyveaske fra affaldsforbrænding til anvendelse i mærtel. Arne Villumsen

Jesper Bruun Krogh, Peter Bo Sarka
Klimaændringeres betydning for vejdata til bygningsenergi simuleringer. Carsten Rode

Michael Cucarella Petersen, Søren Caspersen
FEM-modellering af stålhotte i betondækk ved brand
John Forbes Olesen, Jens Henrik Nielsen

Rasmus Pilgaard Jensen
Analyse af lavenerghus Sisimiut. Carsten Rode

Jesper Bjergregaard, Igor Blagojevic
Dimensionering af fabrikshal. Henning Agerskov, Jesper Gath (ex)

Georgios Hansen
Ekspertilment studie af tidsafhængige deformationer i træ
Staffan Svensson, Emil T. Engelund

Cherina Najarak Gunnlaugsdottir, Anna Wraa
Anlægning af spildevandsanlæg i Sisimiut. Arne Villumsen
Donations 2010

Knud Højgaards Fond
Ph.d.-kursus Flow of Fresh Cement Based Materials, 81.750, Mette Geiker, Section for Construction Materials

Knud Højgaards Fond
Opgradering af apparatur til måling af egenspændinger i hærdet glas, 35.000, Jens Henrik Nielsen, Section for Structural Engineering

Carl Bro Fonden
Carl Bro Prisen, 50.000, Jan Karlshøj, Section for Building Design

Villum Kann Rasmussen Fonden
Klimakammer, 1.156.410, Sigurđur Ormarsson, Section for Structural Engineering

COWI Fonden
Cable Supported Bridges, 160.000, Christos Georgakis, Section for Structural Engineering

COWI Fonden
Numerisk simulering af vinddefekter på bygninger og urbane områder, 60.000, Holger Koss, Section for Structural Engineering

Taumoses Legat
Experimental Investigations to Study the Propagation of Corrosion in Cracked and Uncracked Reinforced Concrete Structures, 30.000, Mette Geiker, Alexander Michel and Anders O.S. Solgaard, Section for Construction Materials

ALECTIA-Fonden
Oversættelse af lærebog om betonelementer, 45.000, Per Goltermann, Section for Structural Engineering

Bjarne Saxhofs Fond
Energiforsparende adfærd, 500.000, Rune Vinther Andersen, Section for Indoor Environment

Bjarne Saxhofs Fond
Termisk Solvarme, 499.100, Elsa Andersen, Section for Building Physics and Services

Bjarne Saxhofs Fond
Forskning i nye metoder og løsninger til brug ved design af nyt lavt boligbyggeri i lavenergi klasse 0, 250.000, Henrik Tommerup, Section for Building Physics and Services

Bjarne Saxhofs Fond
Energiforsparende foranstaltninger i bygninger, 250.000, Christian Anker Hvid, Section for Building Physics and Services

Carl Bro Fonden
Udbygning af Geo-Laboratoriets udstyr, 75.000, Ole Hededal, Section for Geotechnics

Martha & Paul Kem-Jespersens fond
Dansk værtskab for arbejdsmøde, 80.000, Carsten Rode, Section for Building Physics and Services

DTU Innovationspris
Superlative konstruktioner, 25.000, Kristian Dahl Hertz, Section for Building Design
Staff

As of December 31 2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Associate Professor</td>
<td>37</td>
<td>42</td>
<td>40</td>
<td>40</td>
<td>46</td>
<td>38</td>
<td>44</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>21</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Other VIP</td>
<td>18</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>PhD Students</td>
<td></td>
<td>49</td>
<td>64</td>
<td>51</td>
<td>42</td>
<td>37</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>134</td>
<td>129</td>
<td>115</td>
<td>115</td>
<td>105</td>
<td>109</td>
<td>112</td>
</tr>
<tr>
<td>Technical and Administrative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Clerical</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Technician</td>
<td>21</td>
<td>25</td>
<td>21</td>
<td>20</td>
<td>18</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Other</td>
<td>11</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>47</td>
<td>50</td>
<td>48</td>
</tr>
</tbody>
</table>

Total Department Staff | 184 | 179 | 165 | 154 | 156 | 162 | 162 |

2010 ³: Calculated in FTE, full-time equivalent

Education

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STÅ ²-total</td>
<td>555</td>
<td>496</td>
<td>494</td>
<td>514</td>
<td>483</td>
<td>508</td>
<td>519</td>
</tr>
<tr>
<td>Projects (students)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc</td>
<td>80</td>
<td>69</td>
<td>74</td>
<td>88</td>
<td>85</td>
<td>92</td>
<td>74</td>
</tr>
<tr>
<td>BSc</td>
<td>27</td>
<td>20</td>
<td>34</td>
<td>51</td>
<td>31</td>
<td>36</td>
<td>56</td>
</tr>
<tr>
<td>BEng</td>
<td>98</td>
<td>61</td>
<td>84</td>
<td>119</td>
<td>130</td>
<td>62</td>
<td>82</td>
</tr>
<tr>
<td>Admission (students)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc (Building Technology)</td>
<td>67</td>
<td>63</td>
<td>65</td>
<td>58</td>
<td>62</td>
<td>72</td>
<td>60</td>
</tr>
<tr>
<td>BEng (Architectural Engineering)</td>
<td>42</td>
<td>46</td>
<td>45</td>
<td>47</td>
<td>50</td>
<td>52</td>
<td>42</td>
</tr>
<tr>
<td>BEng (Civil Engineering-summer)</td>
<td>81</td>
<td>79</td>
<td>82</td>
<td>84</td>
<td>75</td>
<td>63</td>
<td>58</td>
</tr>
<tr>
<td>BEng (Civil Engineering-winter)</td>
<td>39</td>
<td>31</td>
<td>39</td>
<td>29</td>
<td>38</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>BEng (Arctic Technology)</td>
<td>23</td>
<td>17</td>
<td>19</td>
<td>18</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

Research

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Refereed papers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>53</td>
<td>50</td>
<td>67</td>
<td>45</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>Of these in ISI</td>
<td>87</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>30</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>PhD theses</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>13</td>
<td>5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Doctoral theses</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Finances

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTU-grant</td>
<td>73.944</td>
<td>70.340</td>
<td>66.718</td>
<td>59.827</td>
<td>56.656</td>
<td>53.184</td>
<td>52.523</td>
</tr>
<tr>
<td>External revenue</td>
<td>34.348</td>
<td>44.188</td>
<td>46.489</td>
<td>30.326</td>
<td>31.033</td>
<td>30.862</td>
<td>28.563</td>
</tr>
<tr>
<td>Total</td>
<td>108.292</td>
<td>114.528</td>
<td>113.207</td>
<td>90.153</td>
<td>87.689</td>
<td>84.046</td>
<td>81.094</td>
</tr>
<tr>
<td>Expenditures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wages</td>
<td>83.843</td>
<td>77.830</td>
<td>68.846</td>
<td>66.782</td>
<td>63.021</td>
<td>62.725</td>
<td>62.917</td>
</tr>
<tr>
<td>Other expenses</td>
<td>34.034</td>
<td>34.471</td>
<td>31.933</td>
<td>23.954</td>
<td>26.420</td>
<td>19.628</td>
<td>16.445</td>
</tr>
<tr>
<td>Total</td>
<td>117.877</td>
<td>112.301</td>
<td>100.779</td>
<td>90.736</td>
<td>89.441</td>
<td>82.353</td>
<td>79.362</td>
</tr>
<tr>
<td>Available amount</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carried forward</td>
<td>(1.696)</td>
<td>11.281</td>
<td>9.054</td>
<td>5.617</td>
<td>6.200</td>
<td>7.957</td>
<td>6.264</td>
</tr>
</tbody>
</table>

*Deficit caused by transition to a new income accounting principle.

STÅ ²: 1 STÅ is one student annual work (1 STÅ=60 ects points)