WAKEBENCH. A new IEA Task for the Benchmarking of Wind Farm Flow Models

Rodrigo, J.S.; Moriarty, P.; Barthelmie, R.; Brand, A.; Ejsing Jørgensen, Hans

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
IEA Wind - Task 31

WAKEBENCH: Benchmarking of wind farm flow models

Javier Sanz Rodrigo (CENER)
Patrick Moriarty (NREL)
Rebecca Barthelmie (Indiana Univ.)
Hans E. Jørgensen (Risø-DTU)
Arno J. Brand (ECN)

Porto, 26-01-2011
Motivation

Classical wind farm models, typically based on linearized and algebraic approximations, are being complemented with a large variety of numerical models based on Computational Fluid Dynamics (CFD)

- More realistic description of the flow behavior around complex terrain/wind farm topologies
- More degrees of freedom in the modeling chain → more flexibility for the developer and end-user
- More training/experience requirements
- More user-dependency
- Lack of traceability

Need for quality-checked “best practice” procedures for...

- The evaluation of the numerical models
- The validation and verification strategy
- The selection and definition of test cases for validation

EU TPWind 3% Vision: Model uncertainties below 3% by 2030 regardless of site conditions → Realistically the vision is now around 30% → long way to go!
Main Objective

- To improve wind farm modeling techniques and provide a forum for industrial, governmental and academic partners to develop, evaluate and improve atmospheric boundary layer and wind turbine wake models for use in wind energy
 - from flat to complex terrain,
 - from single to multiple wakes,
 - both onshore and offshore,
 - using well defined test cases from the literature and test wind farms ("research" conditions) as well as from industrial sites ("real-life" conditions)

- Aligned with the activities of Working Group 2 of the EERA Wind Conditions sub-programme.
 - Investigation of the model chain
 - Evaluation of model performance and uncertainties using the data generated by WG1
Model Evaluation Procedures: Metrics

What makes one modelling approach better than the other?
Initial deliverable will be a consensus on metrics used for comparing data to simulations.
Test Cases. Example 1: ABL models

- Single-column model intercomparison for stably stratified Atmospheric Boundary Layer (ABL) (Cuxart et al., 2005)
 - ABL parameterizations from the major climate research centres
 - First-order (RANS-type) and LES turbulence closures
 - Very large dispersion of results!

![Graphs showing comparison of RANS and LES models](image-url)
Test Cases. Example 2: Complex Terrain

- Bolund experiment and blind comparison (Bechmann et al., 2009)
 - Well defined boundary conditions
 - 52 model runs: RANS, LES and wind tunnel models
 - Very large dispersion of results! Errors in wind speed ~ 15%

![Graph showing wind speed variation](image-url)
“WINDBENCH” Web Portal

Administrator: CENER

Scientific Committee

Registered Users

Test Case Portal

Reports

Dissemination
- e-News
- Forums
- Workshops
- R&D Projects

Benchmark of Models and Test Cases
- State-of-the-art models
- Good practice procedures
- Standards

Repository
Status and Outlook

IEA Task 31 was approved by the IEA-Wind ExCo in October 2010

The Task has two operating agents
- Javier Sanz (CENER), to take the overall management of the Task and the “wind” programme
- Patrick Moriarty (NREL), to manage the “wake” programme

Now assembling participants from IEA-Wind countries
- Australia, Austria, Canada, China, Denmark, European Commission, EWEA, Finland, Germany, Greece, Ireland, Italy, Japan, Korea, Mexico, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, United States
- 28 expressions of interest received so far from 12 countries

Negotiation with IEA members for budget allocation under way

Task 31 to effectively start in the second half of 2011