Fundamental insight in soot oxidation over a Ag/Co3O4 catalyst by means of Environmental TEM

Gardini, Diego; Christiansen, J. M.; Jensen, Anker Degn; Damsgaard, Christian Danvad; Wagner, Jakob Birkedal

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Fundamental insight in soot oxidation over an Ag/Co$_3$O$_4$ catalyst by means of Environmental TEM

D. Gardini1, J. M. Christiansen2, A. Degn2, C. D. Damsgaard1,3, J. B. Wagner1

1 Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Lyngby, Denmark
2 Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
3 CINF, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

Motivation: Soot emitted from diesel engine as typical solid particles has caused acute health problems to human beings. In modern vehicles, soot filters need to be regenerated periodically through a catalyzed high temperature oxidation process involving an extra fuel consumption. A dream catalyst would oxidize soot at a very low ignition temperature T_{ig}, ideally the temperature of the exhaust gas itself ($T_{ig} < 250$ °C).

Choice of the materials:
Soot oxidation is a gas/solid/solid interaction. When catalyst and soot are crushed together (tight contact) the oxidation occurs at lower temperature, than when the two are stirred together with a spatula (loose contact).

Catalytic test of Ag/Co$_3$O$_4$, Ag and Co$_3$O$_4$:
Temperature programmed oxidation (TPO) in a flow reactor setup.
10-18 mg soot/catalyst mixture (ratio: 1/5 Wt/Wt).
1 NL/min flow of 10 vol% O$_2$ in N$_2$. 100 to 750 °C at a rate 11 °C/min.
CO and CO$_2$ concentrations in the effluent gas are measured with an ABB AO2020 continuous IR gas analyzer.

\Rightarrow Performance of cosupported catalyst cannot be directly described in terms of the activity of the single Ag and Co$_3$O$_4$ components

Ex situ TEM analysis: TPO snapshots of Ag/soot system.
• Tapering of agglomerate’s borders at oxidation peak
• Soot consumption

In situ TEM analysis:
$T=350$ °C
• Initial soot consumption
• Ag starts to be mobile

$T=600$ °C
• Highly mobile Ag
• Soot gets consumed as Ag advances
• Diffraction halos are visible for the advancing Ag (crystallinity)

$T=750$ °C
• Soot oxidation is an exothermic process. Local heating could lead to melting of the advancing Ag (seen on metal nanoparticles in literature [1] for graphite oxidation). Once oxidation is over, Ag could solidify again.
• At higher temperature, Ag agglomerates back leaving a soot “snake skin” and forming the tapered fronts.

References:

Acknowledgements:
The A. P. Møller and Chastine Mc-Kinney Møller Foundation is gratefully acknowledged for its contribution towards the establishment of the Center for Electron Nanoscopy in the Technical University of Denmark. Part of this work is funded by The Danish Council for Strategic Research (DSF) under Grant No. 2106-08-0039.