Wind power variability and power system reserve requirements at 2020 at 2030 scenarios for offshore wind power in Northern Europe

Sørensen, Poul Ejnar

Publication date: 2013

Citation (APA): Sørensen, P. E. (Author). (2013). Wind power variability and power system reserve requirements at 2020 at 2030 scenarios for offshore wind power in Northern Europe. Sound/Visual production (digital)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Wind power variability and power system reserve requirements at 2020 at 2030 scenarios for offshore wind power in Northern Europe

Poul Sørensen
Technical University of Denmark
Department of Wind Energy

IEA Wind, DTU participation phase 3, 22 May 2013, Helsinki
Consortium and budget

10 European Member States
1 Associated Country

Total budget: 56.8 M€
EU contribution: 31.8 M€
Project objectives

Task force 1: What are the valuable contributions that intermittent generation and flexible load can bring to system services?

Task force 2: What should the network operators implement to allow for off-shore wind development?

Task force 3: How to give more flexibility to the transmission grid?

Overall: How scalable and replicable are the results within the entire pan-European electricity system?
Demo 4 - The challenge

<table>
<thead>
<tr>
<th>Power System Areas</th>
<th>2020 in MW</th>
<th>2030 in MW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base</td>
<td>High</td>
</tr>
<tr>
<td>UCTE</td>
<td>21,421</td>
<td>27,675</td>
</tr>
<tr>
<td>Nordel</td>
<td>4,924</td>
<td>7,019</td>
</tr>
<tr>
<td>UK+IR</td>
<td>15,130</td>
<td>21,500</td>
</tr>
<tr>
<td>Total</td>
<td>41,475</td>
<td>5,6194</td>
</tr>
</tbody>
</table>

www.twenties-project.eu
The demonstration

- Lead by Energinet.dk
- Horns Rev 2 wind farm owned by DONG Energy
- 91 x 2.3 MW Siemens wind turbines
- Siemens turbines built with conventional storm control
- Siemens developed and installed High Wind Ride Through™ - (HWRT)
- 3 years of storms monitored – including both controllers

www.twenties-project.eu
Wind turbine modelling

- Conventional High Wind Shut Down (HVSD) wind turbine control
- Simplified model of Siemens High Wind Ride Through™ - (HWRT)

![Graphs showing power vs wind speed for different control systems.](#)
Storm events

<table>
<thead>
<tr>
<th>Event nr</th>
<th>Date</th>
<th>Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-Nov-10</td>
<td>HWSD</td>
</tr>
<tr>
<td>2</td>
<td>12-Nov-10</td>
<td>HWSD</td>
</tr>
<tr>
<td>3</td>
<td>07-Feb-11</td>
<td>HWSD</td>
</tr>
<tr>
<td>4</td>
<td>24-Sep-12</td>
<td>HWRT</td>
</tr>
<tr>
<td>5</td>
<td>14-Dec-12</td>
<td>HWRT</td>
</tr>
<tr>
<td>6</td>
<td>30-Jan-13</td>
<td>HWRT</td>
</tr>
</tbody>
</table>

Legend:
HWSD - High Wind Shut Down;
HWRT - High Wind Ride Through
February 7-8 2011

![Wind speed graph showing speed in meters per second (m/s) from 19:00 to 02:00 on 7/8 Feb 2011. The graph includes three lines representing different datasets: Wind farm, Max, and Min. The Wind farm line is in blue, the Max line is in red, and the Min line is also in red.]
February 7-8 2011
January 30, 2013
Wind turbine forecast error

February 7-8, 2011

January 30, 2013
Wind turbine forecast error

<table>
<thead>
<tr>
<th>Event</th>
<th>Max forecast error [p.u.]</th>
<th>Average forecast error [p.u.]</th>
<th>Difference [p.u.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Nov-10</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-Nov-10</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-Feb-11</td>
<td>0.72</td>
<td>0.77</td>
<td>0.51</td>
</tr>
<tr>
<td>24-Sep-12</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-Dec-12</td>
<td>0.18</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>30-Jan-13</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Replication work packages: barriers and up scaling

WP 15: Economic impacts of the demonstrations, barriers towards scaling up and solutions (Leader: IIT)

- Assess the local **economic and/or technological impact** of each demo.
- Identify the **barriers to scale-up** the outcomes at a member-state or regional level, and propose **solutions** to overcome these barriers.

WP 16: EU wide integrating assessment of demonstration replication potential (Leader: DTU Wind Energy)

- Assess **portability** of voltage control, frequency control and VPP model to other countries and regions.
- Evaluate North European 2020 **offshore wind power variability**, **hydro potential and barriers** and **grid restriction** studies.
- Pan European economic impact study.

WP 17: EU Offshore barriers (Leader: TENNET)

- Address the issues of **smart licensing of submarine interconnectors** with and without wind parks in the North Sea and Baltic Sea.
- Identify **common licensing barriers** and propose regulatory measures.
Upscaling of Horns Rev 2 to > 3 GW offshore wind

2020: 2.8 GW
2030: 4.6 GW
Simulation of correlated wind power – CorWind

![Graph showing wind speed over time]

- Turbine (A1)
- Wind Farm
- Weather model
Aggregated wind farm model
Critical weather periods

<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Year</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>01/01/2001</td>
<td>2008</td>
<td>21/03/2008</td>
</tr>
<tr>
<td>2005</td>
<td>02/01/2005</td>
<td></td>
<td>13/08/2008</td>
</tr>
<tr>
<td>2007</td>
<td>01/01/2007</td>
<td></td>
<td>08/11/2008</td>
</tr>
<tr>
<td></td>
<td>08/01/2007</td>
<td>2009</td>
<td>11/06/2009</td>
</tr>
<tr>
<td></td>
<td>18/03/2007</td>
<td></td>
<td>03/10/2009</td>
</tr>
<tr>
<td></td>
<td>08/11/2007</td>
<td></td>
<td>07/02/2010</td>
</tr>
<tr>
<td>2008</td>
<td>25/01/2008</td>
<td>2011</td>
<td>10/03/2011</td>
</tr>
<tr>
<td></td>
<td>27/02/2008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Max ramping during storms – 2020

\[P_{\text{res}}(n) = P_{\text{mean}} \left[t(n) - T_{\text{ave}} ; t(n) \right] - P_{\text{min}} \left[t(n) ; t(n) + T_{\text{win}} \right] \]
Simba + WILMAR Intra hour balancing in storm events

Wind power simulations:
- WRF
- Corwind
- WILMAR STT
- HA forecast module

Day ahead scheduling:
- WILMAR JMM
- North Europe

Intra hour balancing:
- Simba
- Denmark

\[P_{w, pos}[5m] \]
\[P_{w, HA}[5m] \]
\[P_{w, DA}[1h] \]
\[P_{p, DA}[1h] \]
\[P_{plan}[5m] \]
\[P_{real}[5m] \]
Summary

- **Observations:**
 - Wind power forecast error reduced by 50% of installed capacity

- **Modelling:**
 - Maximum ramping in Denmark 2020 reduced more than three times
Thank you