Autonomous aerial sensors for wind power meteorology

Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim; la Cour-Harbo, Anders; Thomsen, Carsten; Mølgaard, John Luxhøj; Bange, Jens

Published in:
Proceedings

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Autonomous Aerial Sensors for Wind Power Meteorology

Gregor Giebel, Uwe Schmidt Paulsen, Joachim Reuder, Anders la Cour Harbo, Carsten Thomsen, Jens Bange
Risø DTU, University of Bergen, Aalborg University, DELTA, Universität Tübingen

Project to investigate the applicability of Autonomous Aerial Vehicles with wind sensors for wind power meteorology

This poster describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. During a week of flying a lighter-than-air vehicle, two small electrically powered aeroplanes and a larger helicopter at the Risø test station at Høvsøre, we will compare wind speed measurements with fixed mast and LIDAR measurements, investigate optimal flight patterns for each measurement task, and measure other interesting meteorological features like the air-sea boundary in the vicinity of the wind farm. In order to prepare the measurement campaign, a workshop was held on 12 July 2010 at Risø, soliciting input from various communities.

Flight Week at Danish National Test Station for Large Wind Turbines, Høvsøre, DK

Uni Bergen: SUMO Small Unmanned Meteorological Observer Up to 5 planes, 580g each, equipped with GPS, temperature, pressure and humidity sensors. Potential for very small Pitot tube.

Rise DTU: Skydoc Lighter-than-air platform Equipped with GPS, sonic anemometer, and other met sensors. Data acquisition synchronised to 200 ns from GPS signal.

Uni Tübingen / TU Braunschweig: M²AV 2-m plane with high-resolution pitot tubes and other met sensors. Electrically flying, flight system developed by Mavionics.

Aalborg University: Helicopter Equipped with laptop, GPS, sonic anemometer as slung load, and other met sensors. Total weight <25 kg.

Questions to answer from the project

Website: www.aerialwindsensors.risoe.dk