Analysis of Swine Leukocyte Antigen Peptide Binding Profiles and the Identification of T cell Epitopes by Tetramer Staining

Pedersen, Lasse Eggers; Jungersen, Gregers; Buus, Søren; Golde, William T.

Publication date:
2012

Document Version
Publisher’s PDF, also known as Version of record

Citation (APA):
Analysis of Swine Leukocyte Antigen Peptide Binding Profiles and the Identification of T cell Epitopes by Tetramer Staining

PhD Thesis
Lasse Eggers Pedersen
2012

DTU Vet
National Veterinary Institute
„Think Big About Small Things”
Lasse Eggers Pedersen, September 2003
Supervisors:
Professor Gregers Jungersen
Section for Immunology and Vaccinology
National Veterinary Institute
Technical University of Denmark

Professor Søren Buus
Department of International Health, Immunology and Microbiology
Faculty of Health and medical Sciences
University of Copenhagen

Dr. William T. Golde
Foreign Animal Disease Unit
Plum Island Animal Disease Center, Agricultural Research Service
United States Department of Agriculture, United States Department of Homeland Security

Assessment committee:
Professor Peter M. H. Heegaard (chairperson)
Section for Immunology and Vaccinology
National Veterinary Institute
Technical University of Denmark

Professor Armin Saalmüller
Institute for Immunology
University of Veterinary Medicine Vienna

Professor Søren Skov
Laboratory of Immunology
Faculty of Life Sciences
University of Copenhagen
Analysis of Swine Leukocyte Antigen Peptide Binding Profiles and the Identification of T cell Epitopes by Tetramer Staining
PhD thesis 2012 © Lasse Eggers Pedersen

Table of Contents
Preface .. 4
Acknowledgements .. 7
Summary ... 9
Resumé (Danish summary) .. 11
Abbreviations .. 13
List of Figures .. 15
1. Introduction .. 16
 1.1. The Immune System ... 16
 1.1.1. Innate Immunity ... 18
 1.1.2. Adaptive Immunity ... 19
 1.2. MHC class I and The Swine Leukocyte Antigen ... 20
 1.3. Monitoring Cytotoxic CD8⁺ T Cell Frequency and Effector Function – Going from Mice and
 Men to Cattle and Pig ... 24
 1.4. MHC class I Tetramers ... 25
 1.5. Foot-and-Mouth-Disease and Swine Influenza A Virus – Outbreak, Treatment and Control 26
 1.5.1. Swine Influenza A Virus ... 27
 1.5.2. Foot-and-Mouth-Disease Virus (FMDV) .. 28
 1.6. SLA Tissue Typing ... 33
2. Methodological Setup and Considerations ... 35
 2.1. Peptide-SLA Affinity Measures .. 35
 2.2. Homogenous peptide Affinity and pSLA Stability Assays .. 36
Preface

I clearly remember my first encounter with the Major Histocompatibility Complex (MHC) class I protein. It was during the final year of my bachelor’s degree program in biochemistry and I was attending a course in Protein Science. My group decided to work with the MHC molecule because it was obvious that here was a protein with a striking functionality. What I did not know was how it was related to immunology. In fact I did not know anything about immunology at that time. Choosing the MHC molecule as our model in protein science turned out to be the spark from which my passion for immunology burn strongly today.

After the course I was hooked on MHC, and decided to contact Professor Søren Buus, whom I would later find was one of the world leading experts in this field. This was how I really got the appetite for immunology and fortunately, Prof. Søren Buus agreed to let me into his Laboratory of Experimental Immunology at the University of Copenhagen to do my bachelor’s, and later
my Master’s degrees in Biochemistry. For reasons that I do not know, Søren had just recently put his interest into porcine MHC molecules, and hence he had his student (me) produce, characterize and analyze Swine Leukocyte Antigen (SLA) proteins; The porcine MHC class I molecules. Those three years of working with SLA introduced me to different areas of protein science, biochemistry and not least immunology. Surrounded by extremely skilled and professional people I was taught not only how to navigate in a laboratory but also how to design, set up and adjust techniques to fit different experimental approaches on the way in trying to solve scientific questions and problems that I have encountered, and hopefully will continue to encounter throughout my career.

Graduating from the University of Copenhagen I found myself being a “still-wet-behind-the-ears” but fairly well trained post Master’s scientist with a granted fellowship to go and work for the United States Department of Homeland Security (DHS) and Department of Agriculture (USDA). Through Prof. Søren Buus I got connected with Dr. William T. Golde and Prof. Gregers Jungersen. These three scientists turned out to play a major role in my future research and education as my PhD thesis mentors. A scientific collaboration forged between the Technical University of Denmark (DTU), the University of Copenhagen (KU) and the USDA at Plum Island Animal Disease Center (PIADC) in New York, USA, where I moved to and lived for a year and a half to perform part of my thesis research. The rest of the research and work was carried out in Copenhagen, Denmark at KU and DTU.

The research presented in this Ph.D. thesis was performed in the Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, at the Institute of International Health, Immunology and Microbiology (ISIM), University of Copenhagen, Denmark and at the United States Department of Homeland Security, Plum Island Animal Disease Center, New York, USA in the period 2009 - 2012.

The project was funded by the Danish Council for Independent Research, Technology and Production Sciences (274-09-0281) in collaboration with the Agricultural Research Service, USDA (CRIS #1940-32000-053-00D) and the United States National Institutes of Health (NIH) (HHSN266200400025C).
The thesis consists of eight chapters starting with an introduction to the field of immunology seeing the MHC class I molecule as the focal point, followed by chapter 2 which describes specific methodological approaches and other considerations. Chapters 3 – 6 are devoted to the four manuscripts which constitute the backbone of this thesis. These chapters also include respective results as well as general discussion. Chapter 7 discusses the SLA tetramer work related to paper IV and influenza tetramer staining experiments performed at DTU. The eighth and final chapter concerns general conclusions on the topic and thesis work as well as perspectives.

This thesis includes four manuscripts (I – IV):

- **Paper I**

- **Paper II**

- **Paper III**

- **Paper IV**

Figure 1 illustrates the relation between the four manuscripts.
Acknowledgements

I have learned that great things are rarely achieved alone. For the past three years I have crossed paths and thoughts with a lot of interesting people. My path has taken me from Copenhagen to New York, dropping by Baltimore, further educating myself in Minneapolis, learning about livestock viruses in Barcelona, presenting research in Tokyo, expanding my horizon in Edinburgh before returning to Copenhagen. All the people that I have met on this journey deserve a thank you for all the interesting discussions, for sharing of research ideas as well as results, for opening their doors, for listening to opinions and for contributing to my development and education as a scientist as well as a person.

I would like to thank my mentor and main advisor Prof. Gregers Jungersen for welcoming me into his group at DTU, for making this project possible and for always being supportive and taking his time to reflect on and help with ongoing projects and scientific problems.

My two co-advisors deserve special thanks as well;
Prof. Søren Buus for teaching me that serious work often produce serious results and for reminding me that science is far from always easy, nor logic.
Dr. William Golde for letting me into his laboratory as well as into his family, for all the scientific discussions and exciting experimental setups made possible by him and for putting an honor in being my mentor.

A big thank you goes to my science buddy and good friend Michael Rasmussen. Thank you for being critical upon my results and data analysis as well as for discussing interesting topics about anything under the sun. Our Friday afternoons at Mikkeller’s brew house has not only been fun but also inspiring.

I thank all the people in the Section for Immunology and Vaccinology, National Veterinary Institute, DTU for their kind help in the laboratory as well as in regard to general issues and problems, for advice and lunch time conversations, and for making me feel as part of a social, diverse and very professional group of people, all connected by veterinary science. I owe Ulla Riber, Dorte Fink Vadekær and Panchale Olsen a special thanks for their help with flow cytometry, SLA typing and peptide affinity tests, respectively.

I also thank the Buus group at the Institute of International Health, Immunology and Microbiology (ISIM), University of Copenhagen for always providing help and expertise when needed. Particularly, I thank Mikkel Harndahl for his help with our high-throughput peptide binding experiments as well as discussing the data output with me. The same goes for Morten Nielsen of the Center for Biological Sequence Analysis, DTU, without whose contributions and knowledge this thesis work would not have been what it is today.

All the people who are, or have been, part of the Golde group at PIADC in New York, during the time that I have been working there deserve a warm thank you for always making me feel welcome and as a part of the team, and for helping me with the continuous porcine tetramer work that we have been performing on and off for the past three years. Special thanks goes to Jared Patch for numerous discussions on different scientific topics, for escorting me in the BSL-3 facility before I got my Select Agent Clearance from FBI and for coming early and staying late on the island with me whenever it was needed.
Last but not least, I would like to thank my friends and family. Without them none of this would ever have been possible. I would like to thank my friends for sharing my enthusiasm, frustration and laughs, and I would like to thank you, my mom and dad, for always believing in and supporting me, for telling me how good I am and for never letting me doubt how proud you are of me. A warm thank you goes to my sister Rikke as well, for always listening to what I have to say and for sharing ideas. Finally, I would like to thank my wife, my love, my life, Kristina for her limitless support and patience with me. You are always there when I need you the most.

It has been three intense years, which have required some sacrifice but also given me a tremendous insight in the field of immunology as well as in myself. I am looking forward to seeing all of you again now that my thesis is written and published.

Thank You

Copenhagen, December 2012.
Lasse Eggers Pedersen

Summary

The immune system has evolved in such a way that it is capable of specifically distinguishing between self and non-self structures. Combining this with the ability to memorize and strongly prepare for all pathogens that it has previously encountered, is essential for the proper and effective function of the immune system, and provides the cornerstone for vaccine design. In all vertebrate animals, CD8$^+$ cytotoxic T lymphocytes (CTLs) survey the intracellular environment for signs of invasion by pathogenic organisms such as viruses and bacteria. CTLs survey major histocompatibility complex (MHC) class I molecules, which are highly polymorphic peptide receptors which select and present endogenously derived peptides to circulating CTLs. Peptides that are recognized by CTLs in the context of MHC are epitopes, and represent a small sample of the pathogen proteome, making it possible for the immune system to specifically identify and react upon non-self peptide fragments unique only to the foreign intruder. The
polymorphism of the MHC molecule effectively individualizes the immune response of each member of any given species. Moreover, responding T cells recognize antigen ligands, only in the context of peptide:MHC:β2m (pMHC) complex.

The gene encoding the MHC is one of the most polymorphic regions of the genome known. Despite thousands of different human leukocyte antigen (HLA) variants identified, each member of a species only inherits and expresses a few of these MHC alleles. The “MHC fingerprint” of an individual can be identified by defining MHC alleles. This is classically called “tissue typing” and is done by analyzing the reactivity of peripheral blood cells with sera unique to MHC alleles. Such knowledge is paramount to analysis of the immune response regarding MHC restriction and CTL recognition of pathogen-specific proteins.

Most of the polymorphism of MHC proteins is resident in the peptide binding groove. Hence, each MHC is unique in the way it binds peptides, and by inference it individualizes the entire T cell repertoire of the host. In this way, the diversity of MHC within a species makes immune escape almost impossible for any intruding pathogen.

Characterization of the SLA class I and class II gene products and their peptide binding capacity defines the T cell epitopes of any given pathogen proteome.

To date the analysis of MHC peptide interactions, strength (affinity) and stability of the peptide:MHC complex, has been extensively reported in mice and humans, whereas data for livestock animals such as the pig is rather limited. This thesis describes adapting and applying analytical approaches, originally developed for man and mice to understand porcine MHC class I peptide binding characteristics in relation to immune responses to vaccination or infection. Applying proven technologies to newly produced, recombinant swine leukocyte antigen (SLA) class I proteins yielded a body of data for peptide:SLA:β2m (pSLA) complex affinity and stability. Mapping the SLA proteins for their peptide binding requirements along with the identification of their cognate virally derived peptides, made it possible to explore the nature of the SLA proteins and the roles they play in establishing adaptive immunity. The development of SLA tetramers, enabled investigation of the specific CTL response elicited as a result of immunization against foot-and-mouth-disease virus (FMDV) and swine influenza A virus. These studies resulted in the identification of T cell epitopes from both viruses.
As SLA:peptide binding data accumulates in these and similar studies, it becomes possible for collaborators at Center for Biological Sequence Analysis (CBS), DTU, to further strengthen the NetMHCpan algorithm. This prediction tool now has the capacity for the selection of peptide candidates to be bound by human (HLA), bovine (bovine leukocyte antigen (BoLA)) and swine (SLA) MHC proteins.

Expanding the knowledge of porcine MHC class I molecules, mapping their peptide binding matrices, and producing tetramers as well as improving today’s state-of-the-art method for SLA peptide prediction will modernize immunological science of livestock species. These approaches and results should lead to accelerated development of vaccines with increased efficacy due to optimal activation of cell-mediated immune responses with minimal adverse events.

Resumé (Danish summary)

Immunsystemet har udviklet sig på en sådan måde, at det er i stand til specifikt at skelne mellem selv og ikke-selv strukturer. Ved at kombinere dette med evnen til effektivt at huske og forberede sig imod samtlige patogener, som det tidligere er stødt på, er af afgørende betydning for et korrekt og effektivt fungerende immunsystem og er selve grundstenen i ethvert design af vacciner. I alle hvirveldyr overvåger kroppens CD8⁺ cytotoxiske T-lymfocyatter (CTL'er) det intracellulære miljø i søgen efter tegn på invasion af udefrakommende patogener organismer såsom virus og bakterier. CTL'er overvåger major histocompatibilitets kompleks (MHC) klasse I molekyler, som er stærkt polymorfe peptid-receptorer, der udvælger og præsenterer endogent afledte peptider til cirkulerende CTL'er. Peptider, der genkendes af CTL'er i samspil med MHC molekylet, er såkaldte epitoper og repræsenterer et lille fragment af det patogene proteom, hvilket gør det muligt for immunsystemet specifikt at identificere og reagere imod fremmede peptid fragmenter, som er unikke for den invaderende patogen. MHC molekylets polymorfi er det, der individualiserer immunresponset for hvert enkelt individ i en given art. Endvidere genkender kroppens T-celler kun antigene peptid ligander, når de fremstår som del af det trimere peptid:MHC:β₂m (pMHC) kompleks.
Genet der koder for MHC er kendt som en af de mest polymorfe regioner i genomet. Til trods for eksistensen af tusindvis af forskellige humane leukocynt antigen (HLA) varianter, arver og udtrykker hvert medlem af en art kun et par stykker af disse MHC alleler. Selve "MHC fingeraftrykket" udtrykt af et individ, kan identificeres ved at definere MHC alleler. Den unikke MHC allel kan fastslås ved en metode, traditionelt kendt som ”vævstypebestemmelse”, som foretages ved at analysere perifere blod cellers reaktivitet overfor vævstypnings-sera. En sådan viden er afgørende, for at kunne analysere et immunrespons i forhold til MHC restriktion og CTL genkendelse af patogen-specifikke proteiner.

Størstedelen af MHC proteinets polymorfi er lokaliseret i den peptidbindinge kløft. Derfor er hvert enkelt MHC molekyle unikt i måden det binder peptid-antigener på og som følge heraf individualiseres også hele individets T-celle repertoire via MHC. På denne måde er de enkelte MHC molekylers forskellighed indenfor en bestemt art medvirkende til, at det stort set er umuligt for indtrængende patogener, at undslippe immun systemets søgelys.

Karakterisering af individuelle SLA klasse I- og klasse II gen produkter og deres unikke peptid bindende kriterier definerer T-celle epitoper fra ethvert givent patogen proteom.

Til dato er analysen af MHC klasse I molekylets evne til at binde og præsentere peptider, både i form af bindingsstyrke (affinitet) og stabilitet af peptid:MHC komplekset, blevet omfattende beskrevet i både mus og mennesker. Sådanne data er stadig relativt begrænsede for landbrugs dyr såsom svin. Denne ph.d. afhandling beskriver hvorledes analytiske tilgange, der oprindeligt er udviklet til mennesker og mus, kan tilpasses og anvendes i grise, for at opnå en bedre forståelse af de porcine MHC klasse I molekylers peptid-bindings karakteristika i forbindelse med immun responser rejst imod vaccinering eller infektion. En sådan anvendelse af tidligere afprøvede analyse metoder sammen med nyligt producerede, rekombinante SLA klasse I proteiner, førte til en betydelig mængde data for peptid:SLA:β2m (pSLA) kompleksets affinitet og stabilitet. Kortlægning af SLA proteinernes bindingsmotiver samt identifikationen af matchinge virale peptider, gjorde det muligt at undersøge beskaffenheden af de forskellige SLA proteiner samt de roller, de spiller i etableringen af adaptiv immunitet. Udviklingen af pSLA-baserede tetramerer muliggjorde endvidere studier af specifikke CTL responser fremkaldt som
et resultat af immunisering mod mund- og klovesyge virus (MKS) og svine influenza A virus. Disse undersøgelser resulterede i identifikationen af T-celle epitoper fra begge virus.

Med stadigt stigende mængder peptid bindings data for de forskellige SLA molekyler, opnået igennem disse samt andres studier, er det muligt for vores samarbejdspartnere på Center for Biologisk Sekvensanalyse (CBS), DTU, yderligere at styrke og forbedre den peptid forudsigende algoritme NetMHCpan. Denne forudsigelses algoritme er nu i stand til at udpege peptid kandidater til binding af både humane (HLA), kvæg (BoLA) og svine (SLA) MHC proteiner.

Ved at udvide kendskabet til porcine MHC klasse I molekyler, kortlægge deres peptid bindings motiver og producere pSLA baserede tetramerer, samt forbedre nutidens aktuelle tekniske niveau indenfor metoder til at forudsig SLA peptid binding, kan vi modernisere immunologisk videnskabelige studier i landbrugs dyr. Disse fremgangsmåder og resultater må forventes at føre til en fremskyndet og forbedret udvikling af vacciner med forøget effektivitet, på grund af optimal aktivering af det cellemedierede immunrespons med tilhørende minimale bivirkninger.

Abbreviations

(In order of appearance)

- **MHC**: Major Histocompatibility Complex
- **SLA**: Swine Leukocyte Antigen
- **DHS**: Department of Homeland Security
- **USDA**: United States Department of Agriculture
- **DTU**: Technical University of Denmark
- **KU**: University of Copenhagen
- **PIADC**: Plum Island Animal Disease Center
- **ISIM**: Institute of International Health, Immunology and Microbiology
- **NIH**: National Institutes of Health
- **CTLs**: Cytotoxic T Lymphocytes
- **pMHC**: peptide:MHC:beta-2-microglobulin or peptide:MHC:β2m
- **HLA**: Human Leukocyte Antigen
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMDV</td>
<td>Foot-and-Mouth-Disease Virus</td>
</tr>
<tr>
<td>CBS</td>
<td>Center for Biological Sequence analysis</td>
</tr>
<tr>
<td>BoLA</td>
<td>Bovine Leukocyte Antigen</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic Cell</td>
</tr>
<tr>
<td>NK</td>
<td>Natural Killer cell</td>
</tr>
<tr>
<td>Ab</td>
<td>Antibody</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>Th</td>
<td>T Helper cell</td>
</tr>
<tr>
<td>Treg</td>
<td>Regulatory T cell</td>
</tr>
<tr>
<td>PRRs</td>
<td>Pattern-Recognition Receptors</td>
</tr>
<tr>
<td>BCR</td>
<td>B Cell Receptor</td>
</tr>
<tr>
<td>TCR</td>
<td>T Cell Receptor</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>TAP</td>
<td>Transporter associated with Antigen Processing</td>
</tr>
<tr>
<td>IPD</td>
<td>Immune Polymorphism Database</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic Reticulum</td>
</tr>
<tr>
<td>PLC</td>
<td>Peptide Loading Complex</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Necrosis Factor</td>
</tr>
<tr>
<td>HA</td>
<td>Hemagglutinin</td>
</tr>
<tr>
<td>NA</td>
<td>Neuraminidase</td>
</tr>
<tr>
<td>ORF</td>
<td>Open Reading Frame</td>
</tr>
<tr>
<td>VPg</td>
<td>Viral Protein genome-linked</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated Region</td>
</tr>
<tr>
<td>IRES</td>
<td>Internal Ribosome Entry Site</td>
</tr>
<tr>
<td>FMD</td>
<td>Foot-and-mouth Disease</td>
</tr>
<tr>
<td>AA</td>
<td>Amino Acid</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>OIE</td>
<td>Office International des Epizooties</td>
</tr>
</tbody>
</table>
DIVA Differentiating Infected from Vaccinated Animals
Ad5 Adenovirus 5
PRRSV Porcine Reproductive and Respiratory Syndrome Virus
ASFV African Swine Fever Virus
VSV Vesicular Stomatitis Virus
PCR-SSP PCR Sequence-Specific Primers
PBMCs Peripheral Blood Mononuclear Cells
ELISA Enzyme-Linked Immunosorbent Assay
LOCI Luminescent Oxygen Channeling Immunoassay
SPA Scintillation Proximity Assay
PK15 Porcine Kidney cell line 15
TCID50 Tissue Culture Infective Dose 50% pathological change
BoLA Bovine Leukocyte Antigen
APC Allophycocyanin
BV421 Brilliant Violet
EBV Epstein-Barr Virus
CMV Cytomegalovirus
SIP Synthetic Immunogenic Protein
Ad-SIP Adenovirus Vaccine Vectored SIP
CAF Cationic Adjuvant System
ISCOMs Immune Stimulatory Complexes

List of Figures

Figure 1: The relations between the four manuscripts of the thesis.. 7
Figure 2: Key cellular components of the innate and adaptive immune system 17
Figure 3: Overview of cells and cell stages of the innate and adaptive immune responses 18
Figure 4: The SLA class I molecule... 22
Figure 5: Illustration of an MHC class I monomer and tetramer .. 26
Figure 6: The influenza A replication cycle.. 27
1. Introduction

1.1. THE IMMUNE SYSTEM

In a world in which we are constantly exposed to pathogenic microbes and viruses it is astounding how rarely we actually get ill. The primary reason for this is the immune system, which consists of an array of different cells and mechanisms that form the body’s defense system. The ability of the immune system to successfully overcome incessant pathogenic invasions relies on its aptitude to sense and evaluate microbial threats leading to the control and/or elimination of the intruding pathogen with minimal collateral host tissue destruction and alteration of homeostasis (Goldszmid and Trinchieri 2012). Protection of the host against the different responses of its own immune system is achieved by various levels of tight regulation (Banchereau et al. 2012, Germain 2012, Murray and Smale 2012). The immune system of vertebrates is often divided into two main arms; the innate and the adaptive immune systems (Messaoudi et al. 2011). These systems rely on different immune cells generated in the bone marrow from a common precursor (Figure 2), which display various functions. It is a delicate balance between these two branches, and a coordinated action of their respective
cells, which underlies the immunologic function and success on which the host overall health depends.

Figure 2. Key cellular components of the adaptive and innate branches of the immune system. Dendritic cells (DC), natural killer cells (NK). The figure is adapted from (Messaoudi et al. 2011).

Traditionally, the immune response has been characterized by the type of antibodies (Ab) produced and their ability to mediate a range of functions. Different antigens and differential regulation of B cell stimulation, proliferation and differentiation into plasma cells (Shapiro-Shelef and Calame 2005) leads to the production of Abs of various immunoglobulin (Ig) isotypes. These different isotypes mediate effector functions such as neutralization, complement fixation and opsonization of pathogens. With notable exceptions, the humoral immune response is controlled by T lymphocytes that regulate B cell responses via the cytokines they produce. This includes the T helper (T_h) subsets, T_{h1}, T_{h2}, T_{h17}, T_{h21}, and the CD4⁺/CD25⁺/Foxp3⁺ regulatory T cells (T_{reg}). In addition to the effector function mediated by B cells, a principal T cell effector function is mediated by the CD8⁺ cytotoxic T lymphocyte (CTL) lineage. These cells are critical in anti-viral responses as they detect and kill virus infected cells.

A detailed overview of the different cells, cell stages and primary cytokines involved in the induction and regulation of the innate and adaptive immune responses is illustrated in Figure 3 (Thakur et al. 2012).
1.1.1. Innate Immunity

The innate immune response is the body’s first and primary line of defense against pathogenic intruders, and provides immediate responses to a given infection, but without the establishment of long lasting protection. The primary line of defense consists of mechanical barriers like the gut and skin which are difficult for pathogens to penetrate.

The primary leukocytes mediating innate responses are the NK cells, mast cells, eosinophils and basophils, also including the phagocytic cells; macrophages, dendritic cells and neutrophils (Murphy et al. 2008). Two key functions of the innate immune system are the capacity to broadly recognize and respond to conserved microbial products that are distinctive for non-eukaryotic cells, mediated by germline encoded pattern-recognition receptors (PRRs), and recruitment of adaptive immune cells to the site of infection by the induction and production of cytokines (Janeway, Jr. 1989, Medzhitov 2007).
1.1.2. Adaptive Immunity

In contrast to the innate immune system, the adaptive immune system is not immediate, and it takes time for specialized cells to be stimulated and proliferate in response to an infection. Compared to the innate immunity that relies on germline-encoded receptors to detect the presence of pathogens, the adaptive immune system utilizes a highly diverse set of antigen receptors generated through somatic recombination of gene segments, thereby creating huge numbers of B cell receptors (BCR) and antibodies with different specificities (Baranov and Eppel’ 1984, Tonegawa 1983). The antigen receptor on T cells, the T cell receptor (TCR), can be nearly as diverse with specificities exceeding 10^{15} (Davis and Bjorkman 1988, Messaoudi et al. 2011, Schatz 2004, Tonegawa 1983). TCR diversity is dependent on inexact recombination of gene segments during T cell development (Robins et al. 2009). The difference in antigen recognition by BCRs and TCRs lies in the way B cells directly recognize antigens, whereas T cells recognize antigens (non-self) in association with MHC (self), hereby combining the two (Danilova 2012). Such MHC restriction is particularly important during the development and maturation of primary lymphocytes in the thymus where T cells are forced to walk the fine line of positive selection (Anderson and Takahama 2012, Bevan 1977, Kisielow et al. 1988). In the bone marrow, auto-reactive B cells on the other hand, are negatively selected leading to apoptosis (Gay et al. 1993, Hartley et al. 1993). B cell subsets are involved in the humoral immunity by producing antibodies while T cells are responsible for the cellular immunity and regulatory functions (Danilova 2012). TCR genomic rearrangements enable the adaptive immune response to produce receptors capable of covering the extremely diverse pathogenic pool by recognition of nearly any possible molecular structure.

During T cell development, positive selection ensures that T cells, expressing TCRs with self MHC:peptide binding of a low level of affinity, receive sufficient signal to survive and further develop. At this point T cells expressing a TCR stimulated by self MHC:peptide complexes, i.e. auto-reactive, undergo negative selection resulting in induced apoptosis.

Mature, naïve T cells leave the thymus and start to patrol the lymphatic system of the host in a constant search for pMHC complexes suitable for their specialized TCR. Upon encounter of a
pMHC complex presenting a foreign peptide antigen the T cell goes from being naïve to becoming activated, undergoing proliferation and eventually exiting the lymphatic system in high numbers. From there they migrate to the site of infection to clear the pathogenic invaders. Once the immediate infection has been cleared most of the activated effector cells will die off, whereas a minor subset of activated T cells will survive, and dependent on cytokine signals, such as interleukin (IL)-12 or interferon (IFN)-α at distinct stages of the response, become resting memory T cells (Mescher et al. 2006, Parish and Kaech 2009). These cells keep an elevated precursor frequency of the activated T cells, capable of functioning as fast responders to any subsequent similar infection.

1.2. MHC CLASS I AND THE SWINE LEUKOCYTE ANTIGEN

A large gene family exists in all vertebrates that encode the major histocompatibility complex (MHC) cell surface molecules. These proteins are subdivided into three classes of molecules, I, II and III. In humans, non-human primates and livestock animals, the focus is commonly set on the MHC class I and II proteins. Also encoded in this gene locus are several other proteins such as the transporter associated with antigen processing (TAP1 and TAP2), tapasin, MHC II DM and DR, which are involved in the processing and load of antigen into the MHC binding groove (Cresswell et al. 1999, Wijdeven et al. 2012).

The MHC class I proteins are encoded by a highly polymorphic gene cluster in most jawed vertebrates (Ho et al. 2009c, Ujvari and Belov 2011). They are important protein determinants in immune responses to infectious diseases and vaccines, as well as to autoimmunity and in graft acceptance/rejection (Horton et al. 2004, Kelley et al. 2005, Singer et al. 1997). This region was originally discovered through genetic studies of transplant incompatibility and the related function of these proteins to create histocompatibility, or “self” identification through cell surface expression of these highly polymorphic proteins (Gorer et al. 1948). The MHC class I molecules are glycosylated, membrane-anchored proteins found on almost every nucleated cell in vertebrates.

The MHC class I trimeric complex is made up of a heavy chain protein of approximately 43 kDa, simultaneously non-covalently bound to the stabilizing subunit protein light chain, β2m of 12 kDa, and exogenous peptide (Cresswell et al. 1973, Grey et al. 1973). The heavy chain is made
up of three alpha domains, α_1, α_2 and α_3 in addition to a membrane spanning domain and a small cytosolic C-terminal tail (Figure 4). Most of the sequence variation is found in the α_1 and α_2 domains which are responsible for the binding of exogenous peptides within the MHC class I peptide binding groove, whereas the α_3 domain and β_2m are far more conserved expressing homology to immune globulin domains (Bjorkman et al. 1987a, Bjorkman et al. 1987b, Orr et al. 1979). The higher conservancy of the α_3 domain is most likely due to its role in the interaction with the CTL surface expressed co-receptor CD8 (Salter et al. 1989).

In pigs the MHC is termed swine leukocyte antigen (SLA). The existence of the SLA complex was clearly established more than 40 years ago (Vaiman et al. 1970, Viza et al. 1970), and it was later determined that the SLA region extends for 2.0 Mbp on chromosome 7 (Chardon et al. 2000). Six different loci encode the classical (SLA-1, SLA-2, SLA-3) and non-classical (SLA-6, SLA-7, SLA-8) SLA class I molecules (Ho et al. 2009b, Kusza et al. 2011). The SLA molecules are highly polymorphic and extensive comparisons of the classical SLA class I and human MHC class I genes (HLA-A, HLA-B, and HLA-C) have concluded, that there are more sequence homology amongst the SLA genes than between any of these SLA loci and any HLA class I gene (Smith et al. 2005). Furthermore, the overall genomic organization of the SLA class I region is quite different from that of the HLA class I region (Lunney et al. 2009). As a result, the SLA class I genes were assigned with numbers to avoid the implications that any loci were more homologous to the genes of the HLA system. The non-classical class I genes are categorized so because of their limited polymorphism and slight variations in the 3’ end specific of the cytoplasmic tail compared to the three classical genes (Chardon et al. 2001). All SLA allele sequences reported to date are publicly available at the Immune Polymorphism Database (IPD)-MHC (http://www.ebi.ac.uk/ipd/mhc/sla/index.html).
The diversity in peptide ligand binding of the SLA proteins has been shown to influence swine adaptive immune traits (Mallard et al. 1989a, Mallard et al. 1989b), vaccine responsiveness (Lumsden et al. 1993, Rothschild et al. 1984) and disease resistance (Lacey et al. 1989, Madden et al. 1990). Like the HLA molecules of humans, the SLA class I molecules of swine form a binding groove which can be divided into six pockets responsible for binding of the individual peptide antigen residues. These pockets are termed A, B, D, C, E and F and are responsible for the binding of peptide residues P1, P2, P3, P6, P7 and P9, respectively (Madden 1995, Zhang et al. 2011). The peptide specificity between different class I molecules is extremely diverse and is defined by structural requirements such as the presence of certain amino acids in specific positions of the peptide, especially at the peptide termini which account for most of the peptide-MHC interactions by hydrogen bonds between the peptide backbone and the MHC binding groove (Madden et al. 1992). These residues are often referred to as anchor positions and define the binding motif of each individual MHC class I molecule.
For most MHCs, the critical residues for peptide binding are the P2 and P9 (or C-terminus if the peptide is not a 9mer) of the peptide (Kubo et al. 1994). The side chains at P1, P4 and P5 of the peptide generally protrude toward the solvent and away from the peptide binding groove making them available for TCR recognition, whereas the P2, P3, P6 and P9 side chains face into the groove and stay shielded from the TCR. The A and F pocket structures are well conserved among many class I molecules. In comparison, those of the B through E pockets differ greatly between heavy chains with respect to size and chemical nature (Matsumura et al. 1992), sometimes leading to alternative peptide anchors in one of these pockets.

Degradation of cytosolic proteins predominantly by the proteasome, generates peptides of both self and non-self origin depending on the status of the cell. Such peptides are actively transported into the lumen of the *Endoplasmic Reticulum* (ER) by the TAP1 and TAP2 and loaded onto the MHC class I in symphony with components of a multi molecular unit termed the peptide loading complex (PLC) (Dalchau et al. 2011, Elliott and Williams 2005). Once a peptide has been bound, the mature pMHC complex is being released from the PLC in the ER and into the *Golgi Apparatus* from where it is transported to the cell surface. At the surface pMHC complexes can be scanned by circulating CD8⁺ CTLs. In such a way, pSLA complexes constantly signal the cell’s current state of integrity to the immune system of the host. Upon recognition of foreign, non-self peptides, specific CTLs become activated to kill the infected or transformed cell (Bevan 1995, Doherty and Zinkernagel 1975, Harty et al. 2000), even though a given peptide:MHC complex is estimated to be present at the cell surface at 10 - 400 copies per cell (Hunt et al. 1992).

The high number of SLA class I molecules and the level of polymorphism observed ensure the diversity between different alleles. The number of MHC loci varies among species. Humans and swine can express up to six different MHC class I molecules if they are heterozygous at all three class I loci. However, the presence of duplicated loci leading to copy number variance of some loci of classical SLA class I genes has been suggested to occur among SLA haplotypes (Ho et al. 2009b, Ho et al. 2010b). Such duplication leads to encoding of more than two class I alleles of a gene in animals heterozygous for that particular locus (Ho et al. 2010b, Tanaka-Matsuda et al. 2009). Altogether, such SLA heterozygosity increases immune-competence in that a greater
variety of antigens are likely to be presented leading to a more robust immune response (Penn et al. 2002).

1.3. MONITORING CYTOTOXIC CD8\(^+\) T CELL FREQUENCY AND EFFECCTOR FUNCTION – GOING FROM MICE AND MEN TO CATTLE AND PIG

Section 1.3 of this thesis is modified from section 3.2 in a paper previously published in Vaccine (Thakur et al. 2012) with the thesis author as a coauthor including the responsibility for the writing of section 3.2.

In recent years the scientific fields of immunology and biochemistry have seen great advances in the ability to detect and isolate antigen-specific CD8\(^+\) CTLs (Altman et al. 1996, Dunbar et al. 1998, Romero et al. 1998). Successive modifications of methods like the recombinant MHC tetramer approach for staining of specific CTLs (Altman et al. 1996, Leisner et al. 2008), peptide affinity ELISA (Sylvestre-Hvid et al. 2002), cytokine sensitive ELISpot assays (Hutchings et al. 1989, Malyguine et al. 2007) and the use of chimeric molecules and transgenic animals (Choi et al. 2002), have all contributed to the increasing amount of data describing cytotoxic immune responses during infection and vaccination.

A major function of immune-activated CTLs is the exocytosis of cytotoxic proteins such as pore forming proteins (perforins), serine proteases (granzymes), and cytokines such as IFN-\(\gamma\), tumor necrosis factor (TNF)-\(\alpha\) and interleukin (IL)-2 (Zuber et al. 2005). Such components, revealing the state of activation for individual CTLs, provide a relatively simple set of cytokines that can be used to monitor and define both CTL frequency and function in responses against infections that require T cells for protection (Seder et al. 2008). A potential drawback of using cytokines as a measure for cell activation and function is that the secretion of many cytokines such as IFN-\(\gamma\) is not necessarily indicative of CTL function, because they can be released by non-cytotoxic cells involved in the innate and adaptive immune responses (Figure 3). An assay measuring the secretion of molecules associated with lytic activity or the level of killing of specific target cells by CTLs provides a better approach for assessment of cytotoxic T cell function. Present and future approaches combining one such assay with highly specific MHC tetramer staining of CTLs and additional flow cytometry-based intracellular staining assays are state-of-the-art and could be applicable to models of almost any species of interest.
1.4. **MHC CLASS I TETRAMERS**

MHC tetramers have been described for mouse (Lemke et al. 2011), human (Altman et al. 1996, Leisner et al. 2008) and bovine (Norimine et al. 2006). These complexes are four recombinant MHC molecules loaded with synthetic peptides that are bound (usually through the Biotin–Streptavidin interaction) to a fluorescent tag (Figure 5). They have been well known for more than a decade (Altman et al. 1996), and being readily combined with functional assays they are becoming more important as a tool in monitoring immune responses and in the enumeration and characterization of T cells (Altman and Davis 2003, Wooldridge et al. 2009, Xu and Screaton 2002). Although some interaction of T cells with MHC monomers and dimers can be detected, reproducible staining is best obtained with tetramers due to the higher avidity (Kleenerman et al. 2002). Up to three of the four MHC monomers in a tetramer can be recognized and bound simultaneously by TCRs on the surface of the same antigen specific T cell thereby increasing the tetramer-CTL interaction. Furthermore, tetramers themselves might bind each other to form higher-order oligomers (Kleenerman et al. 2002), which could further elevate the magnitude of staining depending on the corresponding level of structural hindrance resulting from random oligomerization. With the correct tetramers, antigen-specific CTLs can be directly enumerated *ex vivo* from peripheral blood samples although in cases of very low *in vivo* frequencies *in vitro* manipulations such as cell enrichment, cell expansion, and/or prolonged antigen stimulation may enhance the individual frequencies for more detailed analyses (Addo et al. 2003, Kiepiela et al. 2004, Leisner et al. 2008, Schmidt et al. 2009). However, such *in vitro* manipulations may hinder the accuracy of monitoring the natural existence and frequency of CTL responses elicited by infection or vaccination (Schmidt et al. 2009, thor Straten et al. 2000).

One main disadvantage of tetramers is their single-specificity which is a problem when analyzing outbred animals and infections with certain viruses for which immunodominant peptides do not exist. In cases where a complex set of epitopes might be targeted by T cells, it would be necessary to perform analysis using several different class I tetramers produced with several different peptide epitope candidates to obtain multiple specificities. Furthermore, in the case of HLA and SLA, the limited number of recombinant MHC molecules available, and scarce details of their peptide binding preferences, restricts the usage of MHC tetramers (Saalmuller 2006).
Despite the established importance of virus-specific, CTL-mediated killing of virus infected cells and the possibility to quantify induced CTLs by tetramer staining, the MHC heterogeneity of any outbred population, and the exclusive specificity of the MHC tetramer with the corresponding TCR, has so far made it difficult to use tetramer staining as an immunological correlate of protection by validation of specific CD8$^+$ CTLs (Thakur et al. 2012). Tetramer stained CTLs are, however, important immune markers of the effects of vaccination as different vaccines or vaccine strategies can be directly evaluated for their induction of peptide antigen-specific CD8$^+$ CTL subsets. In addition, adoptive transfer of human CTLs specifically purified by tetramer staining has been shown to induce protection against cytomegalovirus (Cobbold et al. 2005). Furthermore, tetramers should allow the investigation of different T cell recognition patterns with pMHC complexes for example by comparing peptides of different lengths.

1.5. FOOT-AND-MOUTH-DISEASE AND SWINE INFLUENZA A VIRUS – OUTBREAK, TREATMENT AND CONTROL

The focus of this PhD project has been set on two of the most contagious and costly viral infections that occasionally devastate the agricultural world, foot-and-mouth disease virus and swine influenza A virus.
1.5.1. Swine Influenza A Virus

The swine influenza A virus strains are negative-sense, single-stranded RNA viruses of the family *Orthomyxoviridae* (Beigel and Bray 2008). The most common influenza A virus strains circulating worldwide are the H1N1, H3N2, and H1N2 distinguished by their divergence in the two major glycoproteins hemagglutinin (HA) and neuraminidase (NA) (Brown et al. 1997, Campanini et al. 2010, Olsen 2002, Richt et al. 2003). HA and NA display a fine balance playing important roles in the influenza A replication cycle. HA mediates docking of the virions to their target cells through binding to sialic acid (which is covalently linked to the terminal galactose of an oligosaccharide, a glycoprotein or glycolipid). NA then functions by cleaving sialic acid from galactose to avoid virion docking on non-respiratory epithelial cells as well as to release newly formed virions from the surface of infected cells (Figure 6) (Beigel and Bray 2008, Jo et al. 2007, Olsen 2002, Richt et al. 2003).

Figure 6. Replication of influenza A virus by initial docking of the virion to the surface of the target epithelial cell via HA-Sialic acid-galactose interactions (1), followed by endocytosis, HA cleavage, and fusion of the viral and endosomal membranes (2) which leads to the release and formation of ribonucleoprotein (RNP) particles into the cell cytoplasm and further migration to the nucleus (3). Transcription and genome replication takes place within the nucleus (4) resulting in translation of mRNA and the generation of nascent viral components such as HA and NA (5), and culminating in the virion assembly and release at the cell membrane (6 + 7). The figure is modified from (Beigel and Bray 2008).

Swine may play an important role in influenza ecology because they express viral receptors that support infection with avian, swine and human influenza viruses, and by that act as mixing vessel for new influenza A virus re-assortments, which may have the potential to be
transmitted to other hosts, including humans (Kida et al. 1994, Kundin 1970, Torremorell et al. 2012, Trebbien et al. 2011). Influenza A virus is mostly transmitted directly through pig-to-pig contact and via aerosols. Seasonal influenza outbreaks greatly affect the meat and agricultural industries every year due to illness, lowered meat production and in worst cases death within animal herds.

The respiratory disease associated with influenza A virus has a global effect on swine as well as birds and humans (Webster et al. 1992) leading to seasonal high demands of Oseltamivir - also known as Tamiflu - which is the only currently available drug used in the prophylaxis of the disease (Saxena et al. 2012). To avoid the risk of resistance and because of the greatly increased price of the active compound of Tamiflu (shikimic acid), it is relevant to find alternative approaches for the prevention and treatment of swine influenza, making it extremely important to seek a better understanding of the immune response against influenza in swine, as well as of the different mechanisms of transmission within pigs and across species (Torremorell et al. 2012). Furthermore, in depth investigation and monitoring of porcine immune responses elicited by new vaccines and by natural disease would contribute to improved testing and development of future vaccines and vaccine delivery approaches.

1.5.2. Foot-and-Mouth Disease Virus (FMDV)

Foot-and-mouth disease virus is a member of the aphthovirus family of Picornaviridae. The genome consists of a positive stranded RNA molecule which encodes a single polyprotein that can be processed into four structural and nine non-structural proteins by virally encoded proteases, including 3CPro and LPro (Guzman et al. 2008, Racaniello V.R. 2006, Stanway et al. 2005). The FMDV genome is surrounded by a densely packed icosahedral arrangement of 60 protomers, each consisting of the four structural proteins VP1, VP2, VP3 and VP4 encoded in the P1 region (Figure 7) (Grubman and Baxt 2004, Rueckert and Wimmer 1984).
Figure 7. The FMDV virion (top) and the linear single-stranded RNA genome (bottom). The linear single-stranded RNA genome is composed of a single open reading frame (ORF) encoding a polyprotein. The genomic RNA has a linked viral protein (VPg) at its 5’ end. The long untranslated region (UTR) at the 5’ end contains an internal ribosome entry site (IRES). The P1 region encodes the structural proteins (VP1 – VP4), whereas the P2 and P3 regions encode the nonstructural proteins associated with replication. The N-terminal leader protease (LPro) is encoded in addition to the 3C protease (3CPro). This figure is modified from the Swiss Institute of Bioinformatics (viralzone.expasy.org).

FMD is a highly contagious disease of cloven-hoofed animals including livestock such as cattle, sheep, goats and swine. It is characterized by development of oral and pedal vesicles that result in high morbidity but mortality is low. However, infection in young animals may be lethal (Golde et al. 2005, Grubman and Baxt 2004, Pacheco et al. 2005). Devastating outbreaks such as the one experienced in the United Kingdom (UK) in 2001 resulted in the slaughter of over 4 million animals and an estimated total loss to the UK economy of between US$ 12.3 and 13.8 billion (Scudamore and Harris 2002, Thompson et al. 2002).

Today, outbreaks that appear in previously FMD-free countries, such as in the UK, are controlled by inhibition of animal movement followed by slaughter of infected as well as in-contact animals (stamping out) and completed by decontamination (Pacheco et al. 2005). Such methods are expensive in terms of lost agricultural production and export. In addition to this there is also a considerable expense in the killing and burning of millions of animals, which generally lead to public concern (Figure 8).
Along with the environmental problems raised by the need to eliminate these animals, such factors underline the needs for alternative and better ways of controlling and dealing with FMD. Although effective vaccines are currently available as chemically inactivated whole virus antigen in adjuvant (Doel 2003), the use of vaccination is most often a decision of last resort. The reason for this is that countries choosing to vaccinate animals (instead of stamping out) are subjects to a prolonged loss of export markets for livestock and livestock products due to a minimum of 6 months before regaining a status as FMD-free. Until recently this period was a full 12 months in accordance with the previous version of the International Animal Health Code of the Office International des Epizooties (OIE), which made the choice of vaccination further unfavorable (Golde et al. 2005). In comparison, at present a country can get classified as FMD-free by documentation of an absence of disease for 3 consecutive months when clearing an outbreak by slaughter and decontamination.

![Figure 8. Over four millions animals infected by FMDV were culled and burned during the 2001 outbreak in the UK in an attempt to control and eradic ate the virus. This picture was taken in North Cumbria, UK, one of the worst affected areas in the country. Foto: Murdo Mcleod (www.guardian.co.uk).](image)

Focusing more research on the control of FMDV and the development of further improved vaccines and effective outbreak response programs, could ultimately lead to a state where vaccination to prevent the disease, thereby saving millions of animals (and billions of US$), would not just be a goal but an achievement.

Assays based on sensitive detection of antibodies against non-structural FMDV proteins, and hence capable of differentiating infected from vaccinated animals (DIVA), have been developed and are still being improved and redesigned for enhanced specificity and sensitivity (Brocchi et
al. 2006, Clavijo et al. 2004, Gao et al. 2012, Muller et al. 2010, Sorensen et al. 2005). Furthermore, the OIE recommends that FMDV vaccines are composed of inactivated and purified virus to remove non-structural viral proteins (Muller et al. 2010), thereby enabling assay specificity for detection of non-structural protein-specific antibodies unique only to infection and not to vaccination. One candidate for such a next-generation FMDV vaccine is the “empty capsid” platform comprised of a replication-defective human adenovirus 5 (Ad5) viral vector with the FMDV P1 capsid and 3CPro precursor inserted (Grubman et al. 2010). Compatible with present diagnostic tests, this vaccine strategy has DIVA capability as well as being effective in swine (Mayr et al. 1999, Mayr et al. 2001, Moraes et al. 2002) and cattle (Pacheco et al. 2005). A limitation is seen for the vaccine (as for killed-virus vaccines and natural infection in general) in that the neutralizing Abs raised against the vaccine strain of choice do not provide cross-serotype protection. Due to such a requirement for vaccine efficacy, the lack of cross-serotype protection limits the value of vaccination during outbreak or in disease eradication (Rodriguez and Grubman 2009). Improved DIVA assays and vaccines would facilitate the process of future vaccination programs to be preferred choices in the prevention, as well as control of FMD outbreaks.

Previous work has demonstrated that vaccination of swine with wild type (3CPro intact) adeno-vectored FMDV containing the strain A24 P1, 2A and strain A12 3C coding sequence (Ad5A24) resulted in the generation of protective anti-FMDV antibodies (Moraes et al. 2002). These experiments showed that swine vaccinated with a single dose of the Ad5A24 were completely protected against a following challenge with FMDV. In comparison, the two control groups, which were vaccinated with either a vesicular stomatitis virus G protein gene vectored by Ad5 (Ad5VSV-G) or with PBS alone, both developed characteristic signs of foot-and-mouth disease (FMD). In addition, mutation of the 3CPro, specifically an amino acid change (C163S), resulted in inhibition of the processing of P1 into mature capsid proteins and a reduced production of anti-FMDV antibodies (Grubman et al. 1995, Patch et al. 2011). These data illustrate that 3CPro is needed for successful structural capsid processing and virion assembly, which again is required for proper induction of an anti-FMDV antibody response. A simplified illustration of the viral FMDV replication cycle is shown in figure 9.
Figure 9. Illustration of the FMDV replication cycle. FMDV virus dock to the cell surface (1) and release the viral RNA into the cytosol (2) leading to viral takeover of the cells own replication machinery and the generation of new viral proteins (3), as well as viral RNA within the replication complexes associated with new vesicles from the Endoplasmic Reticulum (4). New viral RNA forms the genomes of virus particles which become surrounded by newly forming capsids (5). Once assembled the newly produced virus particles are transported to the cell membrane, causing aggregation, and eventually rupture of the cell (6), hereby releasing millions of new virus particles capable of infecting healthy cells of the host (7). Figure illustration made by the author.

Development of vaccines focusing on the activation of an FMDV specific CTL response have been somewhat neglected partly due to observations done in the early events after FMDV infection, indicating a reduction of cell surface pMHC class I complex expression (Sanz-Parra et al. 1998). Other reasons for CTLs being neglected in the context of FMDV infection could also be that neutralizing Abs have been demonstrated to be central players in protection against the disease (Mayr et al. 2001, Moraes et al. 2002), and technical difficulties in developing the appropriate assays for monitoring such CTLs specific for FMDV. Despite this, development of more specific assays for the analysis of vaccine induced CTL responses could reveal a promising effect of such CTLs in the clearance of virus from the infected host. Furthermore, the ability of CTLs to recognize peptide epitopes that would otherwise remain hidden to neutralizing antibodies makes them interesting candidates for enhancing FMDV immunity.
1.6. SLA TISSUE TYPING

Knowing which SLA alleles that are commonly occurring within a herd, a country or even on a global scale can be of great importance in regard to vaccine development and the establishment of immune protection in swine through broad coverage, highly specific, subunit based vaccination against viruses such as the previously mentioned swine influenza virus and FMDV. These technologies can also be applied to addressing other important viral diseases of swine such as porcine reproductive and respiratory syndrome virus (PRRSV), African swine fever virus (ASFV) and vesicular stomatitis virus (VSV).

Because of the extensive polymorphic nature of SLA genes, it is necessary to have very accurate and sensitive typing methods to distinguish the different alleles (Ho et al. 2009c). Historically the most important means for determining SLA class I antigen specificities was serological typing using alloanti-sera (Kristensen 1988, Renard et al. 1988). This is compromised by the lack of typing sera with documented specificities, limiting SLA characterization. Since MHC molecules occasionally differ by sites inaccessible to antibody binding, and often share similar (outer) epitopes, SLA typing sera are limited in identifying specific expression patterns. A combination of sera is usually required to differentiate between animals, and most such typing reagents are directed against an entire haplotype rather than individual alleles, further complicating precise identification of particular SLA alleles. Hence the need for a more sensitive and highly specific typing system, enabling the examination of SLA class I allelic diversities in outbred populations, emerged.

Today, such needs are met by the application of DNA-based typing methods using low- and high-resolution PCR sequence-specific primers (PCR-SSP). These allow high-throughput identification of individual SLA class I alleles, and overall SLA haplotype screening of pig herds and breeds of interest for class I (Essler et al. 2012, Ho et al. 2006, Ho et al. 2009c, Ho et al. 2009a, Martens et al. 2003) and class II alleles (Ho et al. 2010a). The principle of allele-specific primer design is to identify primers where the 3’ end of one or both primers covers polymorphic sites unique to their allele, thereby enabling the identification of that exact allele using that particular pair of primers (Martens et al. 2003). To design site-specific primers, one must know the DNA sequences of the different SLA alleles present in the swine herd or
population being studied. This limits the sequence-based typing approach to alleles with known sequences. SLA allele sequences reported to date are publicly available at the IPD-MHC (http://www.ebi.ac.uk/ipd/mhc/sla/index.html). As of November 2012, there are 131 class I (SLA-1, SLA-2, SLA-3 (all classical class Ia), and SLA-6 (non-classical class Ib)) alleles officially designated (Table 1) with a total of 31 class I high-resolution haplotypes assigned at the allele level, which puts the SLA system among the most well characterized MHC systems in non-primate species (Ho et al. 2012).

Table 1. Statistics of the current SLA sequence database displaying the number of newly identified alleles since 2005. The total number reported for each allele group is indicated in the lower graph. The table was modified and used with approval from the corresponding author (Ho et al. 2012).

The relevance of SLA typing can be linked to the SLA peptide ligand binding and presentation (Lunney et al. 2009). An initial step in identifying virally derived T cell epitopes, that generate a protective T cell response against infection in pigs, is to identify which SLA alleles are expressed by the animals and which peptides they bind and present. Once candidate peptides or proteins have been identified, they may be used to specifically target, activate and/or monitor T cells mediating immunity through subunit based vaccination or synthetically designed pSLA
multimers. Highly specific vaccines based on detailed information about SLA peptide binding and presentation could become useful in preventing the outbreaks of viruses such as swine influenza and FMDV, hereby limiting the almost inevitable financial losses and animal suffering, which are associated with such outbreaks.

2. Methodological Setup and Considerations

This chapter describes the methods and experimental approaches used throughout the PhD project, but not explicitly described in the respective manuscripts. General and detailed materials and methods sections for all methods and approaches of my PhD work can be found in the individual manuscripts presented in this thesis, Paper I – IV.

2.1. PEPTIDE-SLA CLASS I AFFINITY MEASURES

In the studies performed throughout this PhD project the affinities of hundreds of different peptides for binding by the three SLA class I molecules, SLA-1*0401, SLA-2*0401 and SLA-3*0401 have been measured. The assay initially used for this was an enzyme-linked immunosorbent assay (ELISA) previously developed for HLA (Sylvester-Hvid et al. 2002) and through this project adapted to SLA (Paper I – III). The ELISA as such was first described in 1971 and is based on specific Abs capturing antigen which is then detected by an enzyme conjugated detection Ab in symphony with a substrate to give a visible signal (Engvall and Perlmann 1971, Van Weemen and Schuurs 1971). Today the use of monoclonal Abs with various specificities is common practice in most laboratories allowing for an extremely broad range of antigen detection measures. The ELISA used in this project was based on the capture of biotinylated SLA molecules followed by the detection of human β2m using a monoclonal Ab (Figure 10A). This assay principle is based on data showing the affinity between β2m and the MHC heavy chain is enhanced in the presence of bound peptide ligand (Elliott et al. 1991). Hence β2m is only stably folded with SLA class I when there is peptide binding. This results in no detection of peptide-empty SLA molecules in the assay. Due to the lack of a monoclonal Ab specific for porcine β2m we decided to build the assay with human β2m. This decision was based on the findings that both human and porcine β2m show equal capacity to support the folding of pMHC
class I complexes irrelevant of the heavy chain expressing an HLA or SLA α3 domain as presented in Paper I (Figure 4 + 5) of this thesis. The amount of peptide needed to fully saturate half of the SLA molecules made available will give the affinity constant (K_D) of each peptide tested once correlated to a pre-folded HLA-A*02:01 standard curve based on non-linear curve regression (Figure 10B).

![Figure 10. Illustration of the SLA peptide affinity ELISA setup (A) and an example of curve-fitting to peptide dose/response titrations, and the corresponding pSLA complex formation (B). The ELISA plate is covered with streptavidin (orange) which bind the biotin (pink) linked to the SLA heavy chain molecule (green) with bound peptide (red) and the co-bound stabilizing subunit protein β2m (purple). β2m-specific primary Ab (yellow) captures correctly formed pSLA complex made visible by detection via an enzyme (glowing blue) conjugated detection Ab (grey). The peptide dose/response curve illustrates a peptide (MTAHITVPY) bound with extremely high affinity (K_D, 0.8 nM) as presented in Paper II of this thesis.]

2.2. HOMOGENOUS PEPTIDE AFFINITY AND pSLA COMPLEX STABILITY ASSAYS

Luminescent oxygen channeling immunoassay (LOCI) is a technology which enables high throughput, homogenous screening of peptide-MHC class I interactions, among a wide range of other rapid, and quantitative determination possibilities. The technology itself was first described in the nineties (Ullman et al. 1994, Ullman et al. 1996), and the assay consists of two primary components, donor- and acceptor beads, the latter emitting a signal when brought into close proximity with excited donor beads (Figure 11).
Figure 11. The LOCI principle. Biotinylated pSLA (green) is bound to a streptavidin coated donor bead (blue) and captured by an anti SLA monoclonal Ab (PT85A, black) which is conjugated to an acceptor bead (orange).

The donor beads contain a blue-green colored photosensitizing agent, phthalocyanine, which converts ambient oxygen into singlet oxygen upon illumination at 680 nm. The lifetime of singlet oxygen in water is very short (4 µs), hence it can only travel approximately 200 nm before returning to its ground state. This enables acceptor beads to become activated only when brought into close proximity of the donor bead, resulting in a chemiluminescent signal via the PT85A monoclonal Ab capture of correctly folded pSLA complex at the surface of the streptavidin conjugated donor beads (Figure 11). The resulting light emission from activated acceptor beads is at a higher energy than the light used for excitation, which result in very low background signals and a high signal-to-background ratio. In addition to this, the beads are bioactive and can easily be conjugated with Abs or other proteins (such as streptavidin). Furthermore, the homogenous nature of the LOCI assay leaves out the washing steps needed in-between steps for the ELISAs. Altogether, such assay qualities make the LOCI preferable to use in present and future peptide-SLA affinity analyses. To measure the assay signal an instrument like the EnVision® or EnSpire™ (Perkin Elmer Life Sciences) multilabel reader is needed. The LOCI technology was adapted to screen for peptide:SLA affinities having biotinylated heavy chain proteins and an SLA-specific Ab available and adjusted to the assay. LOCI based peptide affinity analysis is described and presented for the SLA-2*0401 and SLA-3*0401 molecules in paper III.
In addition to the affinity, which is a measure for the likeliness of a given peptide to be bound by the MHC class I molecule, accompanying stability measures of pSLA complexes were included. The stability of pMHC has been proposed to be a better determinant of immunogenicity than the actual binding affinity (Busch and Pamer 1998, Harndahl et al. 2012, Mullbacher et al. 1999, van der Burg et al. 1996). To measure such stabilities we used a radiolabeled-based scintillation proximity assay (SPA). The first SPA emerged in the late 1970s (Hart and Greenwald 1979a, Hart and Greenwald 1979b) making the technology commercially available. By radio-labeling porcine β_2m with the ^{125}I isotope we were able to develop a high throughput, homogenous assay for measuring pSLA complex stabilities. Such stability measures are based on the energy transfer between β-particles from the iodine isotope and the scintillation material imbedded in streptavidin coated FlashPlates which bind biotinylated peptide:SLA:$^{125}\text{I-}\beta_2m$ complexes. Upon peptide binding by the SLA molecule, $^{125}\text{I-}\beta_2m$ will co-bind, which will bring the β_2m close to the scintillation material in the plate, hereby activating it by the emitted electrons (β-particles). Activation of the plate then results in a positive signal read-out (Figure 12).

![Figure 12. Illustration of the SPA principle. All components are the same as described in Figure 10 with the exception of the β_2m now being labeled with ^{125}I (glowing pink) and the signal emitted from the activated scintillation material (glowing blue).](image)

The ^{125}I isotope was chosen partly due to its short ranged electron emitters, hence only labeled $^{125}\text{I-}\beta_2m$ brought in close proximity of the FlashPlate scintillation material by the streptavidin-biotin interaction, will lead to signal in the reader. Electrons emitted from unbound $^{125}\text{I-}\beta_2m$ will be absorbed by the surroundings. The dissociation of $^{125}\text{I-}\beta_2m$ is used as a measure of the stability of the pSLA complex. Excess of un-labeled β_2m is added to the sample when steady-state of the complex folding reaction is reached, and just prior to sample measurement. This is
done to ensure that dissociated peptide:SLA:125I-β2m complex is only re-associated by support of un-labeled β2m, not leading to a false high stability by regeneration of measurable peptide:SLA:125I-β2m complexes. Samples are measured continuously in a TopCount NXT liquid scintillation counter for 24 hours at 37°C. The assay and the corresponding stability data achieved for SLA-1*0401, SLA-2*0401 and SLA-3*0401 is presented and discussed in detail in Paper III.

2.3. DESIGNING NEGATIVE CONTROL PEPTIDES FOR THE PRODUCTION AND USE OF pSLA TETRAMERS

Critical to interpreting tetramer binding data is the capacity to measure background signal. In order to address this, two peptides derived from the VP35 region of the Sudan Ebola virus and from the Vibrio Cholera bacteria, respectively were used as nonspecific controls. The binding prediction for the peptides with two SLA molecules, SLA-1*0401 and SLA-2*0401, and in vitro ELISA affinity tests, revealed both peptides as being strongly bound as presented in Paper II. The idea was to produce tetramers using these peptides as negative controls when staining PBMCs. It was based on the presumption that animals under study had never encountered either Ebola or Cholera, and therefore should not be expected to recognize such tetramers, leading to positive staining of their CTLs. This approach was most successful using the Ebola peptide, leading to relatively low false positive background staining. Using the Ebola peptide construct as the reference tetramer was effective, as presented in details in Paper IV. Considering the binding and overall conformation of pMHC complex, combining it with recognition by the TCR being based on the peptide and MHC protein, it follows that the smaller the AAs of the peptide, the less available would the peptide residues be for TCR identification. Following this logic, better control peptides for tetramer formation could be designed resulting in less false-positive tetramer staining. Synthetic 9mer peptides were designed based on three criteria; (i) satisfying the residue preferences inherent in the SLA-1*0401 binding matrix anchor positions P2 and P9, (ii) be comprised of as many alanines or glycines as possible, and (iii) be ranked as strong binders by the NetMHCpan algorithm. Following these criteria, five such peptides were synthesized and tested for affinity binding by SLA-1*0401. Three of the five peptides had high binding affinities of 19, 40 and 104 nM. The two peptides with the highest
affinities were included in the tetramer experiments to provide a “null” tetramer. From those studies we observed that the peptide ASYGAGAGY was consistent in exhibiting low signal in the flow cytometry analysis of T cell staining. This peptide is currently our best option as a negative control in the tetramer experiments.

2.4. VACCINATION TRIALS AGAINST FMDV USING A T CELL SPECIFIC VACCINE CONSTRUCT

Performing the vaccination and boosting trials presented in Paper IV we compared two different vaccine constructs which differed in the functionality of the 3Cpro as described above. The reason for using a 3Cpro mutated version (C163S) of the original vaccine construct was in an attempt to specifically induce a CTL response. We hypothesized that a stronger CTL response would be induced by such an “FMDV-T activating” vaccine, as opposed to the FMDV-B activating construct displaying a functional 3Cpro protein. The hypothesis was based on previously published data showing that the mutated and inactivated protease lacks the ability to successfully cleave the FMDV P1 protein into the sub-proteins (VP1 – 4) which form the viral capsid, hereby enabling the virus to leave the cell. Instead, viral protein would stay captured inside the cells leading to proteasome degradation and elevated availability of various FMDV P1 derived peptides for MHC class I load in the ER, and presentation at the cell surface. The work described in Paper IV presents the approaches made to test this hypothesis and the outcome of the experiments.
3. Paper I

Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

Pedersen LE, Harndahl M, Rasmussen M, Lamberth K, Golde WT, Lund O, Nielsen M, Buus S.

The work presented in this manuscript was focused on the production of the SLA-1*0401 molecule and the porcine β_2m stabilizing subunit protein. Generating chimeric human/swine MHC-molecules by systemically transferring domains of the frequently expressed SLA-1*0401 onto a HLA-I molecule (HLA-A*11:01), enabled us to analyze the peptide-binding characteristics of these molecules and validate the effects of pMHC complex formation supported by either human or porcine β_2m.

In this study we demonstrated that the approaches developed for the “Human MHC Project” can be successfully applied to other species such as pigs. Furthermore, we here presented the complete PSCPL mapped binding motif for one of the most common SLA molecules worldwide, and showed that pMHC complex formation can be equally supported by human as well as porcine β_2m, regardless of the α_3 domain of the heavy chain being of human or porcine origin. In addition, we demonstrate the successful use of a pan-specific predictor of peptide:MHC class I binding, the NetMHCpan, in predicting the specificities of the SLA-1*0401 molecule.
Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

Lasse Eggers Pedersen · Mikkel Harndahl · Michael Rasmussen · Kasper Lambert · William T. Golde · Ole Lund · Morten Nielsen · Soren Buus

Received: 25 March 2011 / Accepted: 20 June 2011 / Published online: 8 July 2011
© Springer-Verlag 2011

Abstract In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules. These are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating CTLs. The polymorphism of the MHC effectively individualizes the immune response of each member of the species. We have recently developed efficient methods to generate recombinant human MHC-I (also known as human leukocyte antigen class I, HLA-I) molecules, accompanying peptide-binding assays and predictors, and HLA tetramers for specific CTL staining and manipulation. This has enabled a complete mapping of all HLA-I specificities (“the Human MHC Project”). Here, we demonstrate that these approaches can be applied to other species. We systematically transferred domains of the frequently expressed swine MHC-I molecule, SLA-1*0401, onto a HLA-I molecule (HLA-A*11:01), thereby generating recombinant human/swine chimeric MHC-I molecules as well as the intact SLA-1*0401 molecule. Biochemical peptide-binding assays and positional scanning combinatorial peptide libraries were used to analyze the peptide-binding motifs of these molecules. A pan-specific predictor of peptide–MHC-I binding, NetMHCpan, which was originally developed to cover the binding specificities of all known HLA-I molecules, was successfully used to predict the specificities of the SLA-1*0401 molecule as well as the porcine/human chimeric MHC-I molecules. These data indicate that it is possible to extend the biochemical and bioinformatics tools of the Human MHC Project to other vertebrate species.

Keywords Recombinant MHC · Peptide specificity · Binding predictions

Introduction

Major histocompatibility complex class I (MHC-I) molecules are found in all vertebrate animals where they play a crucial role in generating specific cellular immune responses against viruses and other intracellular pathogens. They are highly polymorphic proteins that bind 8–11 amino acid long peptides derived from the intracellular protein metabolism. The resulting heterotrimERIC complexes—consisting of the MHC-I heavy chain, the monomorphic light chain, beta-2 microglobulin (β2m), and specifically bound peptides—are translocated to the cell surface where they displayed as target structures for peptide-specific, MHC-I-restricted CTLs. If a peptide of foreign origin is detected, the T cells may become activated and kill the infected target cell.
MHC-I is extremely polymorphic. In humans, more than 3,400 different human leukocyte antigen class I (HLA-I) molecules have been registered (as of January 2011), and this number is currently growing rapidly as more efficient HLA typing techniques are employed worldwide. The polymorphism of the MHC-I molecule is concentrated in and around the peptide-binding groove, where it determines the peptide-binding specificity. Due to this polymorphism, it is highly unlikely that any two individuals will share the same set of HLA-I molecules thereby presenting the same peptides and generating T cell responses of the same specificities—something, that otherwise would give microorganisms a strong evolutionary chance of escape. Rather, this polymorphism can be seen as diversifying peptide presentation thereby individualizing T cell responses and reducing the risk that escape variants of microorganisms might evolve.

In 1999, we proposed that all human MHC specificities should be mapped (“the Human MHC Project”) as a preamble for the application of MHC information and technologies in humans (Buus 1999). Since then, we have developed large-scale tools that are generally applicable towards this goal: production, analysis, prediction and validation of peptide–MHC interactions (Ferre et al. 2003; Harndahl et al. 2009; Hoof et al. 2009; Larsen et al. 2005; Lundegaard et al. 2008; Nielsen et al. 2003, 2007; Ostergaard et al. 2001; Pedersen et al. 1995; Stranzl et al. 2010; Stryhn et al. 1996), and a “one-pot, read-and-mix” HLA-I tetramer technology for specific T cell analysis (Leisner et al. 2008). Here, we demonstrate that many of these tools can be transferred to other vertebrate animals as exemplified by an important livestock animal, the pig. We have successfully generated a recombinant swine leukocyte antigen 1 (SLA-I) protein, SLA-1*0401, one of the most common SLA molecules of swine (Smith et al. 2005). Using this protein, we have developed the accompanying biochemical peptide-binding assays and demonstrated that the immunoinformatics tools originally developed to cover all HLA-I molecules, despite the evolutionary distance, can be applied to SLA-I molecules. We suggest that the “human MHC project” can be extended to cover other species of interest.

Materials and methods

Peptides and peptide libraries

All peptides were purchased from Schafer-N, Denmark (www.schafer-n.com). Briefly, they were synthesized by standard 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, purified by reversed-phase high-performance liquid chromatography (to at least >80% purity, frequently 95–99% purity), validated by mass spectrometry, and quantitated by weight.

Positional scanning combinatorial peptide libraries (PSCPL) peptides were synthesized using standard solid-phase Fmoc chemistry on 2-chlorotrityl chloride resins. Briefly, an equimolar mixture of 19 of the common Fmoc amino acids (excluding cysteine) was prepared for each synthesis and used for coupling in 8 positions, whereas a single type of Fmoc amino acid (including cysteine) was used in one position. This position was changed in each synthesis starting with the N-terminus and ending with the C-terminus. In one synthesis, the amino acid pool was used in all nine positions. The library therefore consisted of $20 \times 9 + 1 = 181$ individual peptide libraries:

- Twenty PSCPL sublibraries describing position 1: AX$_8$, CX$_8$, DX$_8$, ... YX$_8$
- Twenty PSCPL sublibraries describing position 2: XAX$_7$, XCX$_7$, XDX$_7$, ... YXY$_7$
- etc
- Twenty PSCPL sublibraries describing position 9: X$_9$A, X$_9$C, X$_9$D, ... X$_9$Y

A completely random peptide library: X_9

X denotes the random incorporation of amino acids from the mixture, whereas the single letter amino acid abbreviation is used to denote identity of the fixed amino acid.

The peptides in each synthesis were cleaved from the resin in trifluoroacetic acid/1,2-ethanediethiol/trisopropylsilane/water 95:2:1:3 $v/v/v/v$, precipitated in cold diethylether, and extracted with water before desalting on C18 columns, freeze drying, and weighting.

Recombinant constructs encoding chimeric and SLA-1*0401 molecules

A synthetic gene encoding a transmembrane-truncated fragment encompassing residues 1 to 275 of human HLA-A*11:01 alpha chain followed by a FXa–BSP–HAT tag (FXa = factor Xa cleavage site comprised of the amino acid sequence IEGR, BSP = biotinylation signal peptide, HAT = histidine affinity tag for purification purposes; see Online Resource 1) had previously been generated and inserted into the pET28 expression plasmid (Novagen) (Ferre et al. 2003). Synthetic genes encoding the corresponding fragments of the SLA-1*0401 alpha chain (α_1, α_2) and α_3, respectively, (Sullivan et al. 1997) were purchased from GenScript. To exchange domains and generate chimeric human/swine MHC-I gene constructs, a type II restriction endonuclease-based cloning strategy (SeamLess® Strategene; Cat#214400, Revision#021003a), with modifications, was used. All primers were purchased HPLC-purified from Eurofins MWG Operon (Ebersberg, Germany), and all PCR amplifications were performed in a DNA Engine Dyad...
PCR instrument (MJ Research, MN, USA). All constructs were validated by DNA sequencing. The following MHC-I heavy chain constructs were made HHH, HHP, PHP, PHP, and PPP, where the first, second, and third letter indicates domains α1 (positions 1–90), α2 (positions 91–181), and α3 (positions 182–275), respectively, and H indicates that the domain is of HLA-A*01:01 origin, whereas P indicates that it is of SLA-1*0401 origin.

Constructs were transformed into DH5α cells, cloned, and sequenced (ABI Prism 3100Avant, Applied Biosystems) (Hansen et al. 2001). Validated constructs of interest were transformed into an Escherichia coli production cell line, BL21(DE3), containing the pACYC184 expression plasmid (Avidity, Denver, USA) containing an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible BirA gene to express biotin-ligase. This leads to almost complete in vivo biotinylation of the desired product (Leisner et al. 2008).

Expression of recombinant proteins

To maintain the pET28-derived plasmids, the media was supplemented with kanamycin (50 μg/ml) throughout the expression cultures. When appropriate, the media was further supplemented with chloramphenicol (20 μg/ml) to maintain the BirA containing pACYC184 plasmid. E. coli BL21(DE3) cells transformed with appropriate plasmids were grown for 5 h at 30°C, and a 10-ml sample adjusted to OD_{600}=1 was then transferred to a 2-l fed-batch fermentor (LabFors®). To induce protein expression, IPTG (1 mM) was added at OD_{600}~25 and the culture was continued for an additional 3 h at 42°C (for in vivo biotinylation of the product, the induction media was further supplemented with biotin (Sigma #B4501, 125 μg/ml)). Samples were analyzed by reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) before and after IPTG induction. At the end of the induction culture, protease inhibitor (PMSF, 80 μg/l) was added, and cells were lysed in a cell disrupter (Constant Cell Disruptor Systems set at 2,300 bar) and the released inclusion bodies were isolated by centrifugation (Sorval RC6, 20 min, 17,000×g). The inclusion bodies were washed twice in PBS, 0.5% NP-40 (Sigma), and 0.1% deoxycholic acid (Sigma) and extracted into urea–Tris buffer (8 M urea, 25 mM Tris, pH 8.0), and any contaminating DNA was precipitated with streptomycin sulfate (1% w/v).

MHC class I heavy chain purification

The dissolved MHC-I proteins were purified by Ni^{2+}/IDA metal chelating affinity column chromatography followed by Q-Sepharose ion exchange column chromatography, hydrophobic interaction chromatography, and eventually by Superdex-200 size exclusion chromatography. Fractions containing MHC-I heavy chain molecules were identified by A280 absorbance and SDS-PAGE and pooled. Throughout purification and storage, the MHC-I heavy chain proteins were dissolved in 8 M urea to keep them denatured. Note that the MHC-I heavy chain proteins at no time were exposed to reducing conditions. This allowed purification of highly active pre-oxidized moieties as previously described (Ostergaard et al. 2001). Protein concentrations were determined by bicinchoninic acid assay. The degree of biotinylation (usually >95%) was determined by a gel-shift assay (Leisner et al. 2008). The pre-oxidized, denatured proteins were stored at −20°C in Tris-buffered 8 M urea.

Recombinant constructs encoding human and porcine beta-2 microglobulin

Recombinant human β_{2m} was expressed and purified as described elsewhere (Ostergaard et al. 2001), (Ferre et al. 2003). Using a previously reported E. coli codon-optimized gene encoding human β_{2m} as template (Pedersen et al. 1995), a gene encoding porcine β_{2m} was generated by multiple rounds of site-directed mutagenesis (QuikChange® Stratagene, according to the manufacturer’s instructions) (Online Resource 2). Briefly, the genes encoding human or pig β_{2m} were N-terminally fused to a histidine affinity encoding tag (HAT) followed by a restriction enzyme encoding tag (FXa), inserted into the pET28 vector and expressed in inclusion bodies in E. coli. The fusion proteins were extracted into 8 M urea, purified by immobilized metal affinity chromatography (IMAC), and refolded by dilution. The fusion tags were then removed by FXa restriction protease digestion. The liberated intact and native human or pig β_{2m} were purified by IMAC and gel filtration chromatography, analyzed by SDS-PAGE analysis, concentrated, and stored at −20°C until use (Fig. 1).

Purification and refolding of recombinant porcine β_{2m} proteins

Porcine β_{2m} was purified in the same way as human β_{2m} (Ostergaard et al. 2001; Ferre et al. 2003). Briefly, the urea-dissolved β_{2m} protein was purified by Ni^{2+}/IDA metal chelating affinity column chromatography, refolded by drop-wise dilution into an excess refolding buffer under stirring (25 mM Tris, 300 mM urea, pH 8.0), and then concentrated (VivaFlow, 10 kDa). The refolded product was purified by Ni^{2+}/IDA metal chelating affinity column chromatography again (this time in aqueous buffer, i.e., without urea). Fractions containing HAT-pβ_{2m} were iden-
tified by SDS-PAGE and pooled. Removal of the HAT tag was performed by cleavage with factor Xa restriction protease (FXa) followed by renewed purified by Ni²⁺/IDA metal chelating affinity and Superdex200 gel filtration column chromatography, concentrated by spin ultrafiltration (10 kDa), mixed 1:1 with glycerol, and stored at −20°C.

SDS-PAGE analysis

Protein samples were mixed 1:1 in SDS sample buffer (4% SDS, 17.4% glycerol, 0.003% bromophenol blue, 0.125 M Tris, 8 mM IAA (iodoacetamide)) with or without reducing agent (2-mercaptoethanol) as indicated, boiled for 3 min, spun at 20,000×g for 1 min, and loaded onto a 12% or 15% running gel with a 5% stacking gel. Gels were run at 180 V, 40 mA for 50 min.

Peptide–MHC class I interaction measured by radioassay and spin column chromatography

A HLA-A*11:01-binding peptide, KVFPYALINK (non-natural consensus sequence A3CON1 (Sette et al. 1994)), was radiolabeled with iodine (125I) using a chloramine-T procedure (Hunter and Greenwood 1962). Dose titrations of MHC-I heavy chains (HHH or HHP) were diluted into refolding buffer (Tris–maleate–PBS) and mixed with β₂m (human or porcine) and radiolabeled peptide, and incubated at 18°C overnight. Then binding of radiolabeled peptide to MHC-I was determined in duplicate by Sephadex™ G50 spin column gel chromatography as previously described (Buus et al. 1995). MHC bound peptide eluted in the excluded volume, whereas free peptide was retained on the microcolumn. Both fractions were counted by gamma spectroscopy, and the fraction peptide bound was calculated as excluded radioactivity divided by total radioactivity.

To examine the affinity of the interaction, increasing concentrations of unlabeled competitor peptide were added. When conducted under limiting concentrations of MHC-I molecule, the concentration of competitor peptide needed to effect 50% inhibition of the interaction, the IC₅₀, is an approximation of the affinity of the interaction between MHC-I and the competitor peptide.

Peptide–MHC class I interaction measured by an enzyme-linked immunosorbent assay

Peptide–MHC-I interaction was also measured in a modified version of a previously described enzyme-linked immunosorbent assay (ELISA) (Sylvester-Hvid et al. 2002). Briefly, denatured biotinylated recombinant MHC-I heavy chains were diluted into a renaturation buffer containing β₂m and graded concentrations of the peptide to be tested and incubated at 18°C for 48 h allowing equilibrium to be reached. We have previously demonstrated that denatured MHC molecules can de novo fold efficiently, however, only in the presence of appropriate peptide. The concentration of peptide–MHC complexes generated was measured in a quantitative sandwich ELISA (using streptavidin as capture layer and the monoclonal anti-β₂m antibody, BBM1, as detection layer) and plotted against the concentration of peptide offered (Sylvester-Hvid et al. 2002). A prefolded, biotinylated FLPSDYFPSV/HLA-A*02:01 (Kast et al. 1994) complex was used as standard. Because the effective concentration of MHC (3–5 nM) used in these assays is below the equilibrium dissociation constant (K_D) of most high-affinity peptide–MHC interactions, the peptide concentration, ED₅₀, leading to half-saturation of the MHC is a reasonable approximation of the affinity of the interaction.

Using peptide libraries to perform an unbiased analysis of MHC specificity

The experimental strategy of PSCPL has previously been described (Stryhn et al. 1996). The construction of the sublibraries and the ELISA-driven quantitative measurements of MHC interaction are as given above.

Briefly, the relative binding (RB) affinity of each PSCPL sublibrary was determined as RB (PSCPL)=ED₅₀ (Xₙ)/ED₅₀ (PSCPL) (where ED₅₀ is the concentration needed to half-saturate a low concentration of MHC-I molecules) and normalized so that the sum of the RB values of the 20 naturally occurring amino acids equals 20 (since peptides with a given amino acid in a given position are 20 times more frequent in the corresponding PSCPL sublibrary than
in the completely random X₀ library). A RB value above 2 was considered as the corresponding position and amino acid being favored, whereas a RB value below 0.5 was considered as being unfavorable (these thresholds represent the 95% confidence intervals). An anchor position (AP) value was calculated by the equation \(\sum (RB - 1)^2 \). A primary anchor position is characterized by one or few amino acids being strongly preferred and many amino acids being unacceptable. We have arbitrarily defined anchor residues as having an AP value above 15 (Lamberth et al. 2008).

The peptide–SLA-1*0401 binding activity of each sublibrary was determined using previously published biochemical binding assay (ELISA) (Sylvestre-Hvid et al. 2002) (with the modifications described above).

Sequence logos

Sequences logos describing the predicted binding motif for each MHC molecule were calculated as described by Rapin et al. (2010). In short, the binding affinity for a set of 1,000,000 random natural 9mer peptides was predicted using the NetMHCpan method, and the 1% strongest binding peptides were selected for construction of a position-specific scoring matrix (PSSM). The PSSM was constructed as previously described (Nielsen et al. 2004) including pseudo-count correction for low counts. Next, sequence logos were generated from the amino acid frequencies identified in the PSSM construction. For each position, the frequency of all 20 amino acids is displayed as a stack of letters. The total height of the stack represents the sequence conservation (the information content), while the individual height of the symbols relates to the relative frequency of that particular symbol at that position. Letter shown upside-down are underrepresented compared to the background (for details see Rapin et al. 2010).

MHC distance trees

MHC distance trees were derived from correlations between predicted binding affinities. For each allelic MHC-I molecule, the binding affinity was predicted for a set of 200,000 random natural peptides using the NetMHCpan method. Next, the distance between any two alleles was defined as \(D = 1 - PCC \), where PCC is the Pearson correlation between the subset of peptides within the superset of top 10% best binding peptides for each allele. In this measure, two molecules that share a similar binding specificity will have a distance close to 0 whereas two molecules with non-overlapping binding specificities would have a distance close to 2. Using bootstrap, 100 such distance trees were generated, and branch bootstrap values and the consensus tree were calculated.

Results

Generation of chimeric MHC class I molecules

We have previously generated highly active, recombinant human MHC-I (HLA-I) molecules and accompanying high-throughput assays and bioinformatics prediction resources. Here, we transfer the underlying approaches to an important domesticated livestock animal, the pig, and its MHC system, the SLAs. MHC-I molecules are composed of a unique and highly variable distal peptide-binding platform consisting of the alpha 1 (\(\alpha_1 \)) and alpha 2 (\(\alpha_2 \)) domains of the MHC-I heavy chain (HC) and a much more conserved proximal immunoglobulin-like membrane attaching stalk consisting of the alpha 3 (\(\alpha_3 \)) domain of the HC non-covalently associated with the soluble MHC-I light chain (\(\beta_2m \)).

A priori, the establishment of recombinant SLA molecules is complicated by the lack of validated reagents. Any failure could therefore be caused either by real technical problems in generating SLA molecules, or merely by a lack of information about strong peptide binders to the SLA in question. To reduce this uncertainty, we decided to migrate from human to pig MHC-I in a step-wise manner and generate an intermediary chimeric MHC-I molecule composed of a well-known human peptide-binding platform attached to a SLA stalk, which might allow us to assess whether we could generate a functional SLA stalk consisting of SLA-1*0401 \(\alpha_3 \) HC and pig \(\beta_2m \). To this end, we used the \(\alpha_1\alpha_2 \) domains of the HLA-A*11:01 molecule, which we expected should be able to bind a known high-affinity HLA-A*11:01-binding peptide (KVFPYALINK). This peptide could be \(^{125}I\) radiolabeled and used in a very robust peptide-binding assay testing whether the human stalk could be replaced with the corresponding SLA stalk. Once that had been successfully established, the entire SLA-1*0401 molecule would be constructed and tested.

We have previously expressed and purified the extracellular segment spanning positions 1–275 of the human HLA-A*11:01 in a denatured and pre-oxidized version that rapidly refold and bind appropriate target peptides (Ostergaard et al. 2001; Ferre et al. 2003). Codon-optimized genes encoding the corresponding segments of SLA-1*0401 (\(\alpha_1\alpha_2 \)) and SLA-1*0401 (\(\alpha_3 \)) were constructed as described in the “Materials and methods” section and used to replace the HLA-A*11:01 gene segment in the above construct generating a new construct allowing for the expression of SLA-1*0401. For the generation of HLA-A*11:01/SLA-1*0401 chimeras, the genes encoding \(\alpha_1 \) (spanning positions 1–90), \(\alpha_2 \) (spanning positions 91–181), and/or \(\alpha_3 \) (spanning positions 182–275) domains of HLA-A*11:01 and SLA-1*0401 were exchanged using Seam-Less and touch-down cloning strategies. Genes encoding
the extracellular segments 1–275 of the above natural or chimeric MHC-I molecules were C-terminally fused to a biotinylation tag (as indicated for SLA-1*0401 in Online Resource 1), inserted into pET28, and expressed in inclusion bodies in *E. coli* (Fig. 2 shows SDS-PAGE of lysates of recombinant *E. coli* before and after IPTG induction). The fusion proteins were extracted into 8 M urea (without any reducing agents), purified by ion exchange, hydrophobic and gel filtration chromatography (all conducted in 8 M urea, without any reducing agents) (Fig. 3 shows SDS-PAGE of the purified SLA-1*0401 after gel filtration), concentrated, and stored in urea at −20°C.

Testing a chimeric molecule consisting of a SLA-1*0401 stalk and a HLA-A*11:01 peptide-binding platform—comparing human versus porcine β₂m

To test the proximal immunoglobulin-like membrane attaching SLA stalk, we generated recombinant porcine β₂m and a chimeric human/porcine MHC-I heavy chain molecule where the α₁, α₂ were derived from the human HLA-A*11:01, and the α₃ was derived from the porcine SLA-1*0401. Since this construct contains the entire peptide-binding platform of HLA-A*11:01, we reasoned that the binding of the HLA-A*11:01 restricted peptide, KVFPYALINK, could be used as a functional readout of the refolding, activity, and assembly of the entire chimeric molecule including the porcine SLA stalk. For comparison, we tested the supportive capacity of human β₂m and folding ability of the entirely human HLA-A*11:01. A total of four combinations could therefore be tested: porcine or human β₂m in combination with either HHP or HHH (where the first letter indicates the origin of the α₁ domain (Human HLA-A*11:01 or Porcine SLA-1*0401), the second letter the origin of the α₂ domain, and the third letter the origin of the α₃ domain). A concentration–titration of heavy chain was added to a fixed excess concentration (3 μM) of β₂m and a fixed trace concentration (23 nM) of radiolabeled peptide. As shown in Figs. 4 and 5, the four combinations gave almost the same heavy chain dose titration with a half-saturation occurring around 1–2 nM heavy chain. Porcine β₂m supported folding of the chimeric (HHP) α chain slightly better than it supported folding of the human (HHH) α chain. Human β₂m

Fig. 2 SDS-PAGE analysis of cell lysates of SLA-1*0401 expression in *E. coli* before and after induction with IPTG. Samples were mixed 1:1 in a reducing SDS sample buffer and loaded onto a 12% polyacrylamide gel

Fig. 3 SDS-PAGE analysis of size exclusion chromatography peak fractions from SLA-1*0401 purification. Fraction numbers are shown above each lane. Samples were mixed 1:1 in non-reducing SDS sample buffer and loaded onto a 12% polyacrylamide gel. Lanes were loaded with different volumes, indicated below each lane, to avoid overloading. An arrow indicates the band representing purified SLA-1*0401-BSP-HAT heavy chain (36,675 Da)
supported folding of HHP and HHH equally well. Thus, a recombinant SLA stalk can fold and support peptide binding of the peptide-binding platform. These results also suggest that human β2m can support folding and peptide binding of porcine MHC-I heavy chain molecules.

Using a positional scanning combinatorial peptide library approach to perform an unbiased analysis of the specificity of SLA-1*0401 and human–pig chimeric MHC class I molecules

Using human β2m to support folding, the recombinant SLA-1*0401 and human–pig chimeric MHC-I molecule were tested for peptide binding. We have previously described how PSCPL can be used to perform an unbiased analysis of MHC-I molecules (Stryhn et al. 1996). A PSCPL consists of 20 sublibraries for each position where one of each of the 20 natural amino acids have been locked and all other positions contain random amino acids. Analyzing how much of each PSCPL sublibrary is needed to support MHC-I folding (see examples in Fig. 6) and comparing each sublibrary with a completely random library, the effect of any amino acid in any position can be examined and expressed as a RB value. Further, an AP value calculated as the sum of squared deviations of RB values for each position can be used to identify the most prominent anchor position (see “Materials and methods” for calculations). Thus, the specificity of a nonamer binding MHC-I molecule can be analyzed comprehensively with $9 \times 20 + 1$ completely random library=181 sublibraries (Stryhn et al. 1996).

Here, this approach was used to perform a complete experimental analysis of SLA-1*0401 and a limited analysis of the chimeric HPP and PHP molecules. A nonamer PSCPL analysis of SLA-1*0401 can be seen in Table 1. AP values identified positions 9, 3, and 2 (in that order of importance) as the anchor positions of SLA-1*0401. In position 9, the amino acid preferences were dominated by the large and bulky aromatic tyrosine (Y), tryptophane (W), and phenylalanine (F), all having RB values above 4 (Table 1). In the almost equally important position 3, preferences for negatively charged amino acids glutamic acid (E) and aspartic acid (D) were observed. In the lesser important position 2, the most preferred amino acids were the hydrophobic amino acids valine (V), isoleucine (I), and leucine (L), followed by the polar amino acids threonine (T) and serine (S).

Finally, a very limited PSCPL analysis was performed for the two chimeric human HLA-A*11:01/porcine SLA-1*0401 MHC-I molecules, HPP and PHP (Table 2). For both chimeric molecules, it could be demonstrated that position 9 is a strong anchor position. The positively charged amino acids, arginine (R) and lysine (K), were preferred in position 9 of the chimeric HPP molecule, whereas the aromatic amino acid, tyrosine (Y), was exclusively preferred in position 9 of the chimeric PHP molecule.
The positively charged amino acids, arginine (R) and lysine (K), were preferred in position 9 of the chimeric HPP molecule similar to the position 9 specificity of the HLA-A*11:01 molecule. In contrast, the aromatic amino acid tyrosine (Y) was preferred in position 9 of the chimeric PHP molecule similar to the position 9 specificity of the SLA-1*0401 molecule.

Using NetMHCpan to predict peptides that bind to SLA-1*0401 or to human–pig chimeric MHC class I molecules

Our recently described neural network-driven bioinformatics predictor, NetMHCpan (version 2.0), has been trained on about 88,000 peptide-binding data points representing more than 80 different MHC-I molecules (primarily HLA-A and HLA-B molecules). We have previously shown that NetMHCpan is an efficient tool to identify peptides that bind to HLA molecules where no prior data exist (Nielsen et al. 2007) and demonstrated that NetMHCpan can be extended to MHC-I molecules of other species1 (Hoof et al. 2009). We applied NetMHCpan to our peptide repository of about 10,000 peptides, which over the past decade have been selected to scan infectious agents (e.g., SARS and influenza, Sylvester-Hvid et al. 2004; Wang et al. 2010), improve coverage of MHC-I specificities (e.g., Buus et al. 2003; Christensen et al. 2003), etc. We extracted 29 peptides as predicted binders to either the SLA-1*0401, the HPP, or the PHP human/porcine chimeric class I molecules (some of the peptides were predicted to bind to two or even all three of these molecules). All these peptide–MHC-I combinations were tested for binding (Table 3); 13 of 14 peptides bound to the SLA-1*0401 molecule with an affinity (IC50 value) better than 500 nM (6 with an affinity less than 50 nM); all 13 peptides tested on the PHP molecule were strong binders with IC50 values below 50 nM; and 3 of 12 peptides tested on the HPP molecule bound with an affinity better than 500 nM. Of the 39 peptide–MHC-I combinations tested, 20 (51%) were found to be good binders, 9 (23%) were average binders, and 10 (26%) did not bind well (Table 3). This is in stark contrast to the 0.5% frequency of binders among randomly selected peptides (Yewdell and Bennink 1999).

Next, the NetMHCpan method was used to generate PSSMs and sequence logos from the corresponding amino acid frequencies as described by Nielsen et al. (2004). For each position, the frequencies of all 20 amino acids were displayed as a stack of letters showing the sequence conservation/information content (the height of the entire

1 A preliminary report of SLA-1*0401 binding was given in Hoof et al. (2009).
stack) and the relative frequency of amino acids (the height of the individual amino acids). Figure 7 shows a specificity tree clustering of the SLA-1*0401 molecule compared to prevalent representatives of the 12 common HLA super-types that NetMHCpan originally intended to cover (Lund et al. 2004). By this token, SLA-1*0401 most closely resembles that of HLA-A*01:01.

The limited PSCPL analysis of the chimeric MHC-I molecules revealed strong P9 signals with specificities that seemed to be determined by the origin of the α1 domain: the HPP chimera showed an HLA-A*11:01-like P9 specificity, whereas the PHP chimera showed a SLA-1*0401/HLA-A*01:01-like specificity. Since the NetMHCpan predictor successfully captured these chimeric specificities (see above), we reasoned that the predictor might also be used to perform in silico dissection of these specificities and used the P9 specificity as an example of such an in silico analysis. The NetMHCpan predictor considers a pseudo-sequence consisting of 34 polymorphic positions, which contain residues that are within 4.0 Å of the atoms of bound nonamer peptides (Nielsen et al. 2007). Of the 34 positions of the pseudo-sequence, 10 delineates the P9 binding pocket; however, only 3 of these, positions 74, 77, and 97, differ between SLA-1*0401 and HLA-A*11:01. To explore the effect of these three residues, we performed in silico experiments where we examined single substitutions Y74D, G77D, and S97I (the letter before the position number indicates the SLA-A*0401 single letter residue, whereas the letter after indicates the HLA-A*11:01 residue) as well as the corresponding triple substitution (YGS-DDI). As described above, PSSMs were generated for each of the in silico molecules followed by a specificity tree clustering (including SLA-A*0401, HLA-A*01:01, and HLA-A*11:01). Figure 8 shows this tree along with the sequence logo plots showing the predicted binding specificity of each in silico MHC-I molecule. Albeit the Y74D and G77D single substitutions showing some of the positively charged P9 peptide residue preference of HLA-A*11:01, they still clustered with HLA-A*01:01. In contrast, the in silico (YGS-DDI) triple substitution clustered with the HLA-A*11:01. This suggests that the NetMHCpan method is capable of defining the residues of the F pocket that determine the specificity of position 9.

Discussion

We have previously suggested that the specificities of the entire human MHC-I system should be solved ("the human

Table 2 Comparison of PSCPL derived binding motifs for the three MHC-I heavy chains HPP, PHP, and PPP (hα1pα2pα3, pα1hα2pα3, and SLA-1*0401) regarding peptide positions 2 and 9

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acid 2</td>
</tr>
<tr>
<td>A 0.3 0.4</td>
<td>A 0.8 0.0</td>
<td>A 1.0 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 0.2 0.4</td>
<td>C 0.2 0.0</td>
<td>C 0.0 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 0.2 0.4</td>
<td>D 0.7 0.0</td>
<td>D 0.0 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 0.2 0.4</td>
<td>E 0.0 0.2</td>
<td>E 0.0 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 0.0 0.4</td>
<td>F 0.2 5.8</td>
<td>F 0.1 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 0.2 0.4</td>
<td>G 0.3 0.0</td>
<td>G 0.4 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 0.2 0.4</td>
<td>H 0.2 0.4</td>
<td>H 0.2 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2.4 0.4</td>
<td>I 3.4 0.3</td>
<td>I 2.7 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 0.2 2.3</td>
<td>K 0.2 0.0</td>
<td>K 0.1 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 0.0 0.4</td>
<td>L 2.1 0.6</td>
<td>L 1.8 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 5.3 0.4</td>
<td>M 1.9 0.7</td>
<td>M 2.1 0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N 0.0 0.4</td>
<td>N 0.5 0.0</td>
<td>N 0.2 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 0.2 0.4</td>
<td>P 0.0 1.1</td>
<td>P 0.0 0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q 0.0 0.4</td>
<td>Q 0.9 0.0</td>
<td>Q 1.1 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 0.2 9.6</td>
<td>R 0.0 0.2</td>
<td>R 0.2 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 3.4 0.4</td>
<td>S 2.4 0.0</td>
<td>S 2.8 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 4.8 0.4</td>
<td>T 2.5 0.0</td>
<td>T 3.6 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 1.6 0.4</td>
<td>V 3.7 0.8</td>
<td>V 3.3 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 0.2 0.4</td>
<td>W 0.0 5.6</td>
<td>W 0.1 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y 0.2 0.4</td>
<td>Y 0.0 4.3</td>
<td>Y 0.2 16.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum 20 20</td>
<td>Sum 20 20</td>
<td>Sum 20 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP value 51 81</td>
<td>AP value 28 67</td>
<td>AP value 30 254</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RB and AP values are defined as described in Table 1.
However, due to the extreme polymorphism of the MHCs, any attempt to address the specificity of the entire MHC system is a significant experimental undertaking. During the past decade, we have established a series of technologies to support a general solution of human MHC class I and II specificities. For MHC-I, this includes (1) a highly efficient *E. coli* expression system for production of recombinant human and mouse MHC-I molecules (both heavy chain and light chain (\(\beta_2m\)) molecules) (Pedersen et al. 1995; Ostergaard et al. 2001), (2) a purification system for obtaining the highly active pre-oxidized MHC-I heavy chain species (Ferre et al. 2003), (3) a high-throughput homogenous peptide–MHC-I binding assay for obtaining large data sets on peptide–MHC-I interactions (Harndahl et al. 2009), (4) a positional scanning combinatorial peptide library approach for a robust and unbiased analysis of the specificity of any MHC-I molecule (Stryhn et al. 1996), (5) an immunobioinformatics approach to generate predictors of the peptide–MHC-I interaction, NetMHCpan, that allows predictions to be made for any human MHC-I molecules, HLA-I, even those that have not yet been covered by existing data set (Hoof et al. 2009; Nielsen et al. 2007), and finally (6) we have demonstrated that pre-oxidized MHC-I molecules can be used to generate MHC-I tetramers in a simple “one-pot, mix-and-read” manner (Leisner et al. 2008). Here, we propose that the next goal should be to extend the overall approach to MHC-I molecules of other species of interest. Mouse and rats have been extensively studied in the past, but much less reagents and information have accrued for the MHC-I molecules of other species.

Before attempting to generate a recombinant version of the entire porcine SLA-I*0401 molecule, we grafted the more conserved membrane-proximal “stalk” (the immunoglobulin-like class I heavy chain \(\alpha_3\) and \(\beta_2m\) domains) of porcine SLA-I*0401 onto the peptide-binding domain of HLA-A*11:01 generating a chimeric human/porcine MHC-I molecule. This chimeric molecule retained the peptide-binding specificity of the HLA-A*11:01 molecule, and it clearly demonstrated that the recombinant porcine stalk was functional and, by inference, also properly folded. It also suggests that the peptide-binding specificity of the distal domains do not crucially depend upon the identity of the proximal stalk. Further, comparing the ability of human and porcine \(\beta_2m\) to support MHC-I complex formation using either a human or a porcine MHC-I stalk, we demonstrated that every combination (porcine \(\beta_2m\)/human-\(\alpha_3\), porcine \(\beta_2m\)/porcine-\(\alpha_3\), human \(\beta_2m\)/human-\(\alpha_3\), and human \(\beta_2m\)/porcine-\(\alpha_3\)) showed al-

Table 3

Peptide sequences and in vitro determined \(K_D\) values for the three different MHC molecules PPP (SLA-1*0401) (top), PHP (\(\alpha_1\)SLA-2*101, \(\alpha_2\)SLA-2*103) (middle), and HPP (\(\alpha_1\)SLA-2*101, \(\alpha_2\)SLA-2*103) (bottom), respectively.

<table>
<thead>
<tr>
<th>Peptide #</th>
<th>Sequence</th>
<th>Affinity ((K_D, \text{nM}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HSNASTLLY</td>
<td>452</td>
</tr>
<tr>
<td>2</td>
<td>SSMSNFLLLY</td>
<td>192</td>
</tr>
<tr>
<td>3</td>
<td>YSAEALLPY</td>
<td>202</td>
</tr>
<tr>
<td>4</td>
<td>MTFPVSSLSEY</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>MSSAHILLY</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>STFAVLELY</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>MTAASYARY</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>HTSALSLGY</td>
<td>163</td>
</tr>
<tr>
<td>9</td>
<td>ASYQFQLPY</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>YANMWSLMY</td>
<td>386</td>
</tr>
<tr>
<td>11</td>
<td>STYQPLPLY</td>
<td>38</td>
</tr>
<tr>
<td>12</td>
<td>HTAAPWGSY</td>
<td>Non-binder</td>
</tr>
<tr>
<td>13</td>
<td>ITMVSNLTY</td>
<td>169</td>
</tr>
<tr>
<td>14</td>
<td>ATAAATEAY</td>
<td>5</td>
</tr>
<tr>
<td>PHP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HSNASTLLY</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>SSMSNFLLLY</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>MTFPVSSLSEY</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>MSSAHILLY</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>STFAVLELY</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>ASYQFQLPY</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>ITMVSNLTY</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>STPLSWMY</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>HMMAVTLFY</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>KTFEWGVFYY</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>ATNNLGFMY</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>ATATWFQYY</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>ITMVSNLTY</td>
<td>2</td>
</tr>
<tr>
<td>HPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SSMSNFLLY</td>
<td>Non-binder</td>
</tr>
<tr>
<td>4</td>
<td>MTFPVSSLSEY</td>
<td>Non-binder</td>
</tr>
<tr>
<td>6</td>
<td>STFAVLELY</td>
<td>Non-binder</td>
</tr>
<tr>
<td>21</td>
<td>FSFGGFVFK</td>
<td>Non-binder</td>
</tr>
<tr>
<td>22</td>
<td>KVFDKSSLLY</td>
<td>Non-binder</td>
</tr>
<tr>
<td>23</td>
<td>ATFSVPMEK</td>
<td>Non-binder</td>
</tr>
<tr>
<td>24</td>
<td>RVMPVAFK</td>
<td>17</td>
</tr>
<tr>
<td>25</td>
<td>AVYSSSMVYK</td>
<td>127</td>
</tr>
<tr>
<td>26</td>
<td>AVARPPFAK</td>
<td>231</td>
</tr>
<tr>
<td>27</td>
<td>GSYFSFYFK</td>
<td>Non-binder</td>
</tr>
<tr>
<td>28</td>
<td>LTFHHTLYK</td>
<td>Non-binder</td>
</tr>
<tr>
<td>29</td>
<td>MTMRRLLFK</td>
<td>Non-binder</td>
</tr>
</tbody>
</table>

The NetMHCpan percentage of success for predicting binders for the PPP, PHP, and HPP heavy chains were 93%, 100%, and 33%, respectively.
most the same heavy chain dose titration with identical half-saturations. These results illustrate the ability for porcine and human β_2m to support complex formation of SLA molecules and vice versa and suggest evolutionary that the stalk is quite conserved.

Next, we generated the entire SLA-1*0401 heavy chain and succeeded in generating complexes using human β_2m as the light chain and PCSPL as peptide donors. The latter solved the a priori problem of not knowing which peptides would be needed to support proper folding of SLA-1*0401, and it did so in an unbiased manner. Furthermore, this approach is highly efficient since it readily establishes a complete matrix representing the amino acid preference for each amino acid and each position of a nonamer peptide. The specificity of SLA-1*0401 shows two primary anchors: one in positions 9 with a preference for aromatic amino acids [ACFILMPVW] in black, and neutral amino acids [GNQSTY] in green. The axis of the LOGOs indicates in all case positions one through nine of the motif, and the y-axis the information content (see Materials and methods)

Fig. 7 Specificity tree clustering of the SLA-1*0401 molecule compared to prevalent representatives of the 12 common HLA supertypes (Lund et al. 2004). The distance between any two MHC molecules and the consensus tree is calculated as described in “Materials and methods”. All branch points in the tree have bootstrap values of 100%. Sequence logos of the predicted binding specificity are shown for each molecule. In the logo, acidic amino acids [DE] are shown in red, basic amino acids [HKR] in blue, hydrophobic amino acids [ACFILMPVW] in black, and neutral amino acids [GNQSTY] in green. The axis of the LOGOs indicates in all case positions one through nine of the motif, and the y-axis the information content (see Materials and methods).
demonstrated for HLA-A*3001 (Lamberth et al. 2008). Although originally developed to cover all HLA-A and HLA-B molecules, it has also been shown to extend to MHC-I molecules of other species (Hoof et al. 2009). Here, we demonstrate that the NetMHCpan predictor is capable of extracting MHC-I sequence information across species and correctly relate this to peptide binding even in the absence of any available data for the specific query MHC-I molecule, i.e., the SLA-1*0401 as well as the chimeric HPP (hα1pα2pα3) and PHP (pα1hα2pα3) molecules. It is not clear why binding of the PHP chimera was more efficiently predicted than binding of the HPP chimera. One could speculate that NetMHCpan has not captured the effect of the different positions of the pseudo-sequence equally well and not all positions and pockets (and by inference—not all chimeric molecules) are therefore predicted equally well.

Using the NetMHCpan predictor to cluster SLA-1*0401 and representative molecules of 12 human HLA supertypes according to predicted peptide-binding specificities, the SLA-1*0401 specificity closely resembled that of HLA-A*01:01 (IEDB, http://www.immuneepitope.org/MHCalleleId/142, accessed March 9th 2011). This result was also obvious from an inspection of the PSCPL analysis of the SLA-1*0401. The PSCPL analysis of the P9 specificity of the SLA-1*0401 and the two chimeric molecules suggested that the P9 specificity primarily was determined by the α1 domain. This contention was further strengthened by a NetMHCpan-driven in silico analysis of the residues delineating the F pocket, which interacts with P9. This suggests that NetMHCpan can be used to design and interpret detailed experiments addressing the structure–function relationship of peptide–MHC-I interaction. In the case of SLA-1*0401, NetMHCpan suggests that Y74, G77, and S97 play a prominent role in defining the P9 F pocket. Whereas the NetMHCpan readily captured the P9 anchor residue of SLA-1*0401, it did not capture the P3 anchor (at least not in the 2.4 version). We surmise that this shortcoming is due to insufficient examples of the use of P3 anchors within the currently available peptide–MHC-I binding data. Inspecting the pseudo-sequence of SLA-1*0401 and HLA-A*01:01 vs. HLA-A*11:01 suggests that the presence of an arginine in position 156 might...
explain the preference for negatively charged amino acid residues in P3. Future NetMHCpan-guided experiments could pointedly address this question, and the resulting data could complement existing data and be used to update and improve the NetMHCpan predictor.

All in all the two complementary approaches, PSCPL and NetMHCpan, agreed on the specificity of the SLA-1*0401 molecule, as well as of the two chimeric MHC-I molecules. Thus, the specificity of SLA-1*0401 appear to be well established. This specificity has successfully been used to search for foot-and-mouth disease virus (FMDV)-specific CTL epitopes in FMDV-vaccinated, SLA-1*0401-positive pigs, and the recombinant SLA-1*0401 molecules have been used to generate corresponding tetramers and stain pig CTLs (Patch et al. 2011). In conclusion, we here present a set of methods that can be used to generate functional recombinant MHC-I molecules, map their specificities and identify MHC-I-restricted epitopes, and eventually generate peptide–MHC-I tetramers for validation of CTL responses. This suite of methods is not only applicable to humans, but potentially to any species of interest.

Acknowledgments We thank Lise Lotte Bruun Nielsen, Anne Caroline Schmiegelow, and Iben Sara Pedersen for their expert experimental support. This work was in part supported by the Danish Council for Independent Research, Technology and Production Sciences (274-09-0281) and by the National Institute of Health (NIH) (HHSN266200400025C).

References

4. Paper II

Identification of peptides from foot-and-mouth disease virus structural proteins bound by class I swine leukocyte antigen (SLA) alleles, SLA-1*0401 and SLA-2*0401

Pedersen LE, Harndahl M, Nielsen M, Patch JR, Jungersen G, Buus S, Golde WT.

This manuscript describes the determination of the complete SLA-2*0401 binding motif and apply such PSCPL determined amino acid preferences, expressed by both SLA-1*0401 and SLA-2*0401, to NetMHCpan based predictions. Followed by in vitro peptide binding analyses these studies lead to the identification of several high-affinity binding peptides derived from FMDV. The analyses and methods presented provide the characterization of potential T cell epitopes in response to threatening diseases such as FMDV.
Identification of peptides from foot-and-mouth disease virus structural proteins bound by class I swine leukocyte antigen (SLA) alleles, SLA-1*0401 and SLA-2*0401

L. E. Pedersen*,†‡, M. Harndahl†, M. Nielsen§, J. R. Patch*, G. Jungersen‡, S. Buus† and W. T. Golde*

*Foreign Animal Disease Unit, Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, USA. †Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen N., 2200, Denmark. ‡National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark. §Center for Biological Sequence Analysis, Technical University of Denmark, Copenhagen, Denmark.

Summary

Characterization of the peptide-binding specificity of swine leukocyte antigen (SLA) class I and II molecules is critical to the understanding of adaptive immune responses of swine toward infectious pathogens. Here, we describe the complete binding motif of the SLA-2*0401 molecule based on a positional scanning combinatorial peptide library approach. By combining this binding motif with data achieved by applying the NetMHCpan peptide prediction algorithm to both SLA-1*0401 and SLA-2*0401, we identified high-affinity binding peptides. A total of 727 different 9mer and 726 different 10mer peptides within the structural proteins of foot-and-mouth disease virus (FMDV), strain A24 were analyzed as candidate T-cell epitopes. Peptides predicted by the NetMHCpan were tested in ELISA for binding to the SLA-1*0401 and SLA-2*0401 major histocompatibility complex class I proteins. Four of the 10 predicted FMDV peptides bound to SLA-2*0401, whereas five of the nine predicted FMDV peptides bound to SLA-1*0401. These methods provide the characterization of T-cell epitopes in response to pathogens in more detail. The development of such approaches to analyze vaccine performance will contribute to a more accelerated improvement of livestock vaccines by virtue of identifying and focusing analysis on bona fide T-cell epitopes.

Keywords binding motif, prediction, SLA, T-cell epitope

Introduction

The major histocompatibility complex class I (MHC I) molecules are highly polymorphic proteins that bind 8 to 11 amino acid (AA) peptides derived from the intracellular protein metabolism. In humans, such MHC class I molecules are referred to as human leukocyte antigens (HLA) and in swine are termed swine leukocyte antigens (SLA). These integral membrane proteins are found on all nucleated cells in vertebrates and play a crucial role in the cell-mediated immune response against viruses, other intracellular pathogens and transformed cells (cancer). When an endogenous peptide engages in a productive interaction with a MHC class I heavy chain and the non-polymorphic MHC I-stabilizing subunit molecule, beta-2-microglobulin (β2m), they generate a heterotrimeric peptide/MHC/β2m (pMHC) complex that is displayed at the cell surface. When surface-exposed MHC complexes incorporate foreign peptides, derived from a virus for instance, these complexes serve as targets for the T-cell receptor (TCR) on CD8+ MHC I-restricted, peptide-specific, cytotoxic T lymphocytes (CTLs). In this way, endogenous peptides are constantly presented on the cell surface, signaling the cell’s current state of integrity to the immune system of the host. If the peptide presented is of foreign origin, T cells may become activated and kill the infected or transformed cell (Doherty & Zinkernagel 1975; Zinkernagel & Doherty 1975; Bevan 1995; Harty et al. 2000).

Address for correspondence

W.T. Golde, Plum Island Animal Disease Center, Agricultural Research Service, USDA, PO Box 848, Greenport, NY 11944, USA.
E-mail: william.golde@ars.usda.gov
Accepted for publication 19 June 2012

Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
The effect of polymorphism of the MHC I molecule is reflected in the different peptide-binding motifs that different class I molecules have, with peptide-binding anchor positions (APs) typically in positions 1, 2, 3 and 9 (Sette & Sidney 1999; Lambeth et al. 2008). More than 5400 different HLA-I alleles have been registered according to the IMGT/HLA database (http://www.ebi.ac.uk/imgt/hla/stats.html), and this number is growing rapidly as more efficient HLA typing techniques are employed worldwide. The same has been seen for SLA typing in recent years, with highly specific primer-based typing systems being used with success for both class I and class II genes in inbred as well as outbred pigs (Ho et al. 2006, 2010a,b; Yeom et al. 2010). As such, there is an equivalent need for biochemical data. However, characterizing the peptide-binding motif for each of these alleles is not feasible. Rather, application of the NetMHCpan peptide-binding predictor algorithm (Nielsen et al. 2007; Hoof et al. 2009) developed from the extensive human database available provides a method for quantitative predictions of peptide binding to any MHC protein. Thus, potential peptides that will bind can be reduced from hundreds (or even thousands) to a more dexterous number that can be tested.

Previously, we reported that the bioinformatics tools originally developed to cover all HLA-I molecules, despite the evolutionary distance, can be applied to SLA-I molecules (Hoof et al. 2009; Pedersen et al. 2011). Here, we have used the NetMHCpan predictor to predict peptides likely to be bound by the SLA-1*0401 and SLA-2*0401 molecules using a NetMHCpan rank score threshold of 2.00%. In this way, we were able to limit the number of possible peptides derived from the structural proteins of foot-and-mouth disease virus (FMDV), strain A24, from more than 700 to <16. Furthermore, by comparing the sequences of these peptides with the AA binding preferences exhibited by the SLA molecule in question, we were able to further reduce the number of peptides to be tested. The final peptide candidates were then analyzed in vitro for the ability to induce the formation of pMHC complexes with a high enough affinity to allow proper folding using the recombinant SLA-1*0401 and SLA-2*0401 class I heavy chains.

Through the production of recombinant SLA molecules, mapping of their peptide-binding motifs using universal peptide libraries, that is, the positional scanning combinatorial peptide libraries (PSCPL) (Stryhn et al. 1996; Lambeth et al. 2008), and the screening of AA sequences from FMDV structural proteins for possible peptide/MHC matches using NetMHCpan (Hoof et al. 2009), we were able to identify several in vitro binding peptides and characterize the SLA-2*0401 binding motif. Such data add to the knowledge of the binding characteristics for SLA molecules in general and could eventually lead to further insight into specific viral-derived peptides that induce porcine CTLs during infection. The result of taking these approaches is a rapid and accurate capacity to identify T-cell epitopes and the subsequent ability to measure specific T-cell immunity following vaccination or infection (Patch et al. 2011).

Materials and methods

Recombinant construct encoding the SLA-2*0401 protein

SLA-2*0401 recombinant protein was produced using a previously described standard expression system (Pedersen et al. 2011). Briefly, a transmembrane, truncated fragment encompassing residues 1–276 of the SLA-2*0401 alpha chain (Genscript, Appendix S1) followed by an FXa-BSP-HAT tag (FXa = factor Xa cleavage site comprising the AA sequence IEGR = I (isoleucine), E (glutamic acid), G (glycine), R (arginine), BSP = biotinylation signal peptide, HAT = histidine affinity tag for purification purposes) was inserted into a pET28a expression vector (Novagen). The construct was transformed into DH5α cells and sequenced (ABI Prism 3100Avant; Applied Biosystems) (Hansen et al. 2001). The validated construct of interest was transformed into an Escherichia coli (E. coli) production cell line, BL21 (DE3), containing the pACYC184 expression plasmid (Avidity) with an IPTG (Isopropyl-beta-D-thiogalactoside)-inducible BirA gene to express biotin-ligase. This leads to almost complete in vivo biotinylation of the desired product (Schmidt et al. 2009).

Expression and purification of recombinant SLA-2*0401 and human beta-2 microglobulin

SLA-2*0401 heavy chain proteins were produced as previously described (Pedersen et al. 2011). E. coli BL21(DE3) cells containing the SLA proteins were lyzed in a cell disrupter (Constant Cell Disruptor Systems set at 2300 bar), and the released inclusion bodies were isolated by centrifugation (Sorval RC6, 20 min, 17 000 g). The inclusion bodies were washed twice in PBS, 0.5% NP-40 (Sigma), 0.1% deoxycholic acid (DOC: Sigma) and extracted into urea–Tris buffer (8 M urea, 25 mM Tris, pH 8.0). SLA-2*0401 heavy chain proteins extracted in 8 M urea were purifed as previously described for the SLA-1*0401 molecule (Pedersen et al. 2011). In brief, this was carried out by successive immobilized metal adsorption, hydrophobic interaction, and Superdex-200 size exclusion chromatography. Throughout purification and storage, the MHC heavy chain proteins were dissolved in 8 M urea to keep them denatured. The pre-oxidized, denatured proteins were stored at –20 °C in Tris-buffered 8 M urea. Recombinant human β2m was expressed and purified as described elsewhere (Ostergaard et al. 2001; Ferre et al. 2003). Complexing the porcine alpha chains with human β2m and peptide allowed the application of the ELISA for class I MHC folding using mouse anti-human β2m, as described below and previously (Pedersen et al. 2011). Reagents for porcine β2m are not available.

Published 2012. This article is a U.S. Government work and is in the public domain in the USA., doi: 10.1111/j.1365-2052.2012.02400.x
Peptides and peptide libraries

All peptides were purchased from Schafer-N. Briefly, they were synthesized by standard 9-fluorenylmethyloxycarbonyl (Fmoc) chemistry, purified by reverse-phase high-performance liquid chromatography (to at least >80% purity, frequently 95–99% purity), validated by mass spectrometry and quantitated by weight.

PSCPL peptides were used to determine the SLA-2*0401-binding motif. The experimental strategy of PSCPL has previously been described for both HLA (Stryhn et al. 1996) and SLA (Pedersen et al. 2011) proteins. Briefly, pools of random peptides with a single fixed AA in a fixed peptide position for every AA in every peptide position were used to determine the MHC-binding pocket motif of the MHC I protein. PSCPL peptides were used in a quantitative ELISA as described for the SLA-1*0401 molecule (Pedersen et al. 2011). The relative binding (RB) affinity of each PSCPL sublibrary was determined as RB (PSCPL) = ED50(X9)/ED50(PSCPL) and normalized, so that the sum of the RB values of the 20 naturally occurring AA equaled 20 (ED50 being the concentration needed to half-saturate a low concentration of MHC class I molecules). Anchor position values were calculated by the equation \(Y[(RB – 1)^2] \).

PSCPL peptides were synthesized using standard solid-phase Fmoc chemistry on 2-chlorotrityl chloride resins. Briefly, an equimolar mixture of 19 of the common Fmoc AAs (excluding cysteine) was prepared for each synthesis and used for coupling in eight positions, whereas a single type of Fmoc AA (including cysteine) was used in one position. This position was changed in each synthesis starting with the N-terminus and ending with the C-terminus. In one synthesis, the AA pool was used in all nine positions. The library therefore consisted of 20 \(\times \) 9 + 1 = 181 individual peptide libraries:

- 20 PSCPL sublibraries describing position 1: AX8, CX8, DX8, ... YX8
- 20 PSCPL sublibraries describing position 2: XAX7, XCX7, XDX7, ... XYX7
- etc.
- 20 PSCPL sublibraries describing position 9: X8A, X8C, X8D, ... X8Y
- a completely random peptide library: X9

X denotes the random incorporation of AA from the mixture, whereas the single-letter AA abbreviation is used to denote the identity of the fixed AA. Following synthesis, the peptides were cleaved from the resin in trifluoroacetic acid/1,2-ethanediethanol/tris(2-carboxyethyl)phosphate/water 95:2:1:3 v/v/v/v, precipitated in cold diethyl ether and extracted with water before desalting on C18-columns, freeze drying and weighing.

ELISA for affinity of peptide binding

Peptides were tested for their ability to form complexes with the SLA-1*0401 and SLA-2*0401 proteins using a previously described immunosorbent assay (Sylvestre-Hvid et al. 2002). Complexes of heavy chain with human \(\beta_2m \) and peptide were formed in 96-well plates (Thermo Scientific). All peptides were dissolved in 150 \(\mu \)l standard folding buffer [PBS, 0.1% pluronic (Lutrol F-68, BASF), pH 7.0] using sonication for 5 min. A fivefold dilution series of peptide in 12 consecutive points was performed in standard folding buffer. Following a 48-h incubation (18 °C), samples were transferred to streptavidine-coated plates (Nunc, DK-4000) and incubated for 3 h at 4 °C. Plates were washed in wash buffer (PBS, 0.05% Tween-20) and probed with a mouse anti-human \(\beta_2m \) mAb (Brody et al. 1979), BBM1 (70 nm), for 1 h at room temperature. All wells were washed in wash buffer and detection antibody [HRP-conjugated goat-anti-mouse IgG (1.13 nm); Sigma] was added followed by a 1-h incubation at room temperature. Plates were washed and substrate (TMB; Kirkegaard & Perry Laboratories) was added to all wells. Reactions were stopped using \(\text{H}_2\text{SO}_4 \) (0.3 M) and plates read at 450 nm using a ELx808 Microplate reader (Biotek). Data were analyzed using EXCEL and PRISM software.

A pre-folded, biotinylated FLPSDYFPSV/HLA-A*02:01 (Kast et al. 1994) complex was used as a standard to convert OD450 values to the amount of complex formed using the second-order polynomial \(Y = a + bX + cX^2 \), thereby enabling a direct conversion of the actual peptide concentration offered to the actual concentration of correctly formed pMHC complex. Because the effective concentration of MHC (2–5 nM) used in these assays is below the equilibrium dissociation constant \(K_D \) of most high-affinity peptide–MHC interactions, the peptide concentration, ED50, leading to half-saturation of the MHC is a reasonable approximation of the affinity of the interaction.

Results

Analysis of the peptide-binding specificity of SLA-2*0401 with the PSCPL

The porcine MHC class I heavy chain, SLA-2*0401, was tested for binding PSCPL using human \(\beta_2m \) to support folding, as previously described (Stryhn et al. 1996; Pedersen et al. 2011). Similar to the SLA-1*0401 molecule (Pedersen et al. 2011), no differences were seen for the SLA-2*0401 allele when comparing human \(\beta_2m \) and porcine \(\beta_2m \) in supporting MHC peptide binding and complex folding (data not shown). Each peptide sublibrary was titrated to determine the EC50 \((K_D) \) for SLA-2*0401. The peptide-binding preferences for the SLA-2*0401 heavy chain protein are shown in Table 1. Amino acids in each peptide position were assigned a RB value as described in Materials and Methods. Amino acid residues with RB values above 2 (shown in boldface, Table 1) indicate support of peptide binding, whereas AAs having RB values below 0.5 (shown in italics, Table 1) are considered disfavored. A
The preference of AAs with larger side chains such as tryptophan (W), tyrosine (Y) and phenylalanine (F) in position 9 was revealed by RB values of 11.2, 4.1 and 3.0 respectively (Table 1). Such RB values indicate that this anchor must align with a large and deep F pocket.

These preferences are illustrated in Fig. 1, where logos displaying single-letter AA codes were generated to compare the in vitro SLA-binding motifs for the PSCPL with those of in silico NetMHCpan-based peptide preference predictions. NetMHCpan is a mathematical algorithm developed for MHC peptide-binding predictions in several different species of interest (Nielsen et al. 2007; Hoof et al. 2009). For SLA-1*0401, the data show that the PSCPL-based matrix detected preferences only for aspartic acid (D) and glutamic acid (E) in position 3 of the peptide. Furthermore, the NetMHCpan-based logo had tyrosine (Y) preferred in position 9 with phenylalanine (F) second most preferred, whereas the PSCPL data indicate a preference of phenylalanine (F) over tyrosine (Y) (Fig. 1). The PSCPL showed the same preference for the SLA-2*0401 molecule regarding tyrosine (Y) and phenylalanine (F) in position 9 (Fig. 1). Additionally, a shared preference for serine (S) was seen between the two SLA-2*0401 logos in position 2, as well as a unique preference for asparagine (N) within the PSCPL matrix only. These differences between the NetMHCpan-based logo and the PSCPL-based logo likely reflect the limited amount of peptide-binding data available for the NetMHCpan algorithm-based predictions with regard to MHC molecules that share specificity with these two SLA molecules (Hoof et al. 2009). Increasing the data available

Table 1 SLA-2*0401-binding motif

<table>
<thead>
<tr>
<th>Amino acid position in peptide</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA-2*0401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.3</td>
<td>0.4</td>
<td>1.3</td>
<td>1.9</td>
<td>0.8</td>
<td>0.6</td>
<td>2.6</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>C</td>
<td>0.4</td>
<td>0.1</td>
<td>0.6</td>
<td>0.9</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>D</td>
<td>0.5</td>
<td>0.3</td>
<td>0.7</td>
<td>0.4</td>
<td>1.5</td>
<td>2.2</td>
<td>1.3</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>E</td>
<td>0.7</td>
<td>0.1</td>
<td>1.1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>3.7</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>F</td>
<td>2.0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.9</td>
<td>1.3</td>
<td>1.5</td>
<td>0.4</td>
<td>0.8</td>
<td>3.0</td>
</tr>
<tr>
<td>G</td>
<td>0.1</td>
<td>0.9</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.2</td>
<td>0.4</td>
<td>1.6</td>
<td>0.1</td>
</tr>
<tr>
<td>H</td>
<td>1.0</td>
<td>0.7</td>
<td>0.1</td>
<td>0.5</td>
<td>0.9</td>
<td>2.3</td>
<td>0.4</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>I</td>
<td>1.2</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>1.2</td>
<td>0.8</td>
<td>1.7</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>K</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>1.1</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>L</td>
<td>0.5</td>
<td>0.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
<td>0.7</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>M</td>
<td>2.2</td>
<td>0.3</td>
<td>1.4</td>
<td>0.8</td>
<td>1.1</td>
<td>1.5</td>
<td>1.2</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>N</td>
<td>0.8</td>
<td>0.9</td>
<td>1.6</td>
<td>0.7</td>
<td>1.8</td>
<td>0.3</td>
<td>0.8</td>
<td>1.7</td>
<td>0.1</td>
</tr>
<tr>
<td>P</td>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
<td>3.3</td>
<td>1.4</td>
<td>1.6</td>
<td>0.6</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Q</td>
<td>1.4</td>
<td>0.2</td>
<td>0.8</td>
<td>1.5</td>
<td>3.3</td>
<td>2.5</td>
<td>2.8</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>R</td>
<td>2.2</td>
<td>0.2</td>
<td>1.4</td>
<td>1.4</td>
<td>0.5</td>
<td>1.2</td>
<td>0.4</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>S</td>
<td>1.6</td>
<td>3.3</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>0.6</td>
<td>0.8</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>T</td>
<td>0.9</td>
<td>1.8</td>
<td>1.1</td>
<td>0.8</td>
<td>0.5</td>
<td>1.2</td>
<td>0.4</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>V</td>
<td>1.1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.4</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>W</td>
<td>0.9</td>
<td>0.2</td>
<td>0.2</td>
<td>2.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.9</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Y</td>
<td>1.9</td>
<td>0.5</td>
<td>3.1</td>
<td>1.3</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>1.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Sum</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>AP value</td>
<td>9</td>
<td>77</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>19</td>
<td>5</td>
<td>132</td>
<td></td>
</tr>
</tbody>
</table>
Identification of peptides derived from FMDV bound by SLA-1*0401 and SLA-2*0401 alleles

The P1 region of FMDV, which codes for the viral capsid or structural proteins, was screened for 9mer and 10mer peptides that would potentially bind SLA-1*0401 and SLA-2*0401 using the NetMHCpan version 2.3 (Nielsen et al. 2007). Nine such peptides were identified for the SLA-1*0401 allele (four 9mers and five 10mers), and 10 peptides (five 9mers and five 10mers) were identified for SLA-2*0401 (Table 2). Selection of peptides was based on the NetMHCpan algorithm predictions and further analyzed for the AA preference in positions 2, 3 and 9 of the individual peptides based on the PSCTL-binding motifs (Table 1 and Pedersen et al. 2011). Some peptides were selected because of their NetMHCpan rank despite not satisfying one of the primary anchors according to the PSCTL motif. Others were left out despite expressing an anchor–residue match and a proper NetMHCpan rank because of in-house peptide limitations. Within a pool of 726 possible peptide combinations from the P1 region, eight of the nine peptides selected for either SLA-1*0401 or SLA-2*0401 were within the top 10 highest ranking peptides for predicted binding (Appendix S2). All chosen peptides had a NetMHCpan rank score of <2% (Erup et al. 2011), meaning that <2% of random natural peptides had a predicted binding affinity stronger than the selected peptides.

These peptides, predicted to be bound, were tested for actual binding by SLA-1 and SLA-2 in an in vitro ELISA binding assay. Five of the nine FMDV-derived peptides predicted to be bound by the SLA-1*0401 molecule tested positive in the assay. These peptides include four 9mers (TVYNGTSKY, MTAHTVPY, SSVGVTGY and YLSGIAQYY) and one 10mer (NMTAHITVPY). Additionally, we observed that four of the 10 peptides predicted to be bound by SLA-2*0401 produced correctly folded peptide–MHC complexes. These included three 9mers (MTAHITVPY, SSVGVTGY and YLSGIAQYY) and one 10mer (NTYLSGIAQYY). The respective binding affinity (KD) values for all bound peptides ranged between 0.8 and 433 nM. Peptides with KD values below 500 nM are considered strong (50–500 nM) or very strong (0.1–50 nM) binders (Table 2).

Two additional peptides, from the VP35 region of the Sudan Ebola virus and from the conserved hypothetical protein of the Vibrio cholerae bacteria respectively, also were tested for binding by the SLA-2*0401 protein for comparison (Table 2). These peptides previously have been shown to be bound by SLA-1*0401 with high affinity (Pedersen et al. 2011). As for SLA-1*0401, both peptides were found to be strongly bound by the SLA-2*0401 molecule with KD values of 1 and 2 nM respectively (Table 2).

Discussion

Previously, we defined the peptide motifs that are bound by the class I MHC protein of swine, SLA-1*0401 (Pedersen et al. 2011). We now expand this analysis to an additional SLA protein, SLA-2*0401, and describe a method for the analysis of a virus proteome to identify the peptides that will be bound by porcine MHC I proteins. Peptides from the P1 region of the FMDV genome, which encodes the structural proteins of the virus, were identified using this method for the gene products of two class I alleles, SLA-1*0401 and SLA-2*0401. These two class I alleles are commonly expressed alleles in commercial pig breeds as well as in different porcine cell lines.
used for experimental research (Smith et al. 2005; Ho et al.
2006, 2009). Hence, the determination of binding motifs for
such proteins is of great value as a tool in the analysis of
porcine immune responses and vaccine development.

A comparison of in silico predictions with in vitro analysis
of peptide binding, expressed as the formation of correctly
folded porcine MHC class I, supports previously published
data describing the capacity of the NetMHCpan predictor to
detect successful peptide/MHC binding beyond humans
(Hoof et al. 2009; Pedersen et al. 2011). All 12 different
peptides tested for the SLA-2*0401 molecule were predicted
by the NetMHCpan to be bound, and six formed complexes
with the SLA class I alpha chain and β2m in vitro (Table 2).
These data show the NetMHCpan predicted actual peptide
binding at a rate of 50%, based on the limited data available
to date. Of the nine peptides selected for SLA-1*0401-
binding tests, all were predicted to be bound and five formed
complexes with the heavy chain during the in vitro analysis.
For the SLA-1*0401 molecule, 55.6% of the predictions
were confirmed. These results were obtained using a
prediction algorithm based on human MHC proteins. As
such, they illuminate the value of using the extensive
human database to apply to swine MHC peptide predictions
such, they illuminate the value of using the extensive
structural protein region identified by the algorithm, four of
the six that failed to be bound by SLA-2*0401 have random
binding scores. Contrarily, none of the four peptides that were
bound by SLA-2*0401 have random binding scores calcu-
lated from the PSCPL matrix values and the approximation for
longer peptide-binding prediction described by Lundegaard
et al. (2008) (not shown). This indicates that improve-
ment could be achieved by adding quantitative SLA pepti-
de-binding data derived using the PSBPL matrix for the
NetMHCpan neural network to refine the algorithm and
generate more accurate predictions (Nielsen et al. 2007; Hoof
et al. 2009). In addition, one peptide (YLSGIAQYY) was
predicted not to be bound by SLA-2*0401 but in fact was
strongly bound. Considering several peptides predicted to be
bound failed to do so in vitro illustrates the need for more data
to enhance the NetMHCpan for species other than humans.

Differences in peptide motifs expressed by the two SLA
alleles, SLA-1*0401 and SLA-2*0401, are illustrated by
peptides bound by one allele but not by the other. The 10mer
peptide, NTYLSGIAQY, was bound by SLA-2*0401 with an
affinity (Kd) value of 22 nM but was not bound by the SLA-
1*0401 alpha chain (Table 2). This supports the higher
preference for the AA tyrosine (Y) in position 3 (RB = 3.1) by
the SLA-2*0401 molecule and that the residue is disfavored
in the same position for SLA-1*0401 (RB = 0.5) peptide
binding. SLA-1*0401 is unique from most other alleles in
that this alpha chain has a peptide-binding anchor in
position 3 as well as in the more commonly observed APs 2
and 9 (Pedersen et al. 2011). Thus, the side chain of the AA
in position 3 factors into peptide binding, and so the
NTYLSGIAQY peptide does not bind despite the positions 2
and 9 anchors being satisfied (T; RB = 2.5 and Y; RB = 4.3
respectively). The opposite effect is seen for the 10mer
peptide NMTAHITVPY. This peptide is readily bound by SLA-
1*0401 with a Kd value of 67 nM but is not bound by SLA-
2*0401. Methionine (M) is disfavored in position 2 in the
SLA-2*0401 protein, whereas it is favored by the SLA-
1*0401 peptide-binding motif (RB = 0.3 and 1.9
respectively). Furthermore, threonine (T) in position 3 is less
favored for SLA-2*0401 than for SLA-1*0401.

As with the differences in binding preferences, similarities
also are seen for the two SLA alpha chains analyzed when
analyzing these viral peptides. Some of the identified binding
peptides are shared, and this sharing can be explained by
the identical preferences for tyrosine (Y) in the important
position 9 anchor and for methionine (M) in position 1.
There is also the shared preference for serine (S) and
threonine (T) in the position 2 anchor (Table 1; Pedersen
et al. 2011). In addition, our data show that both SLA
proteins can bind 9mer peptides as well as 10mer peptides
with similar affinities. This observation may indicate that
peptide epitopes longer than nine AAs may be common for
these MHC proteins. Such peptides would lead to different
recognition patterns expressed by TCRs than the more often
reported 9mers. The reason for this lies in the conformation
of the peptide–MHC complex, which would differ in the way
the peptide bulges away from the groove. This is caused by
the bound peptide now having one or even two additional
AAs in the center available for TCR recognition, depending
on which peptide AA interacts with the respective anchors
within the MHC groove (Fig. 2).

Figure 2 Illustration of commonly known 9mer peptide-binding vs.
three different proposed 10mer peptide-binding scenarios and the
effect on the exposure of the central amino acids. Black bars illustrate
important interactions between the peptide and the anchor position
residues in the B- and F-pockets of the major histocompatibility
complex (MHC) class I-binding groove. Numbers indicate the peptide
position of the primary MHC-interacting amino acids within the
peptide.
To date, most analysis has focused on 9mer peptides as candidates for strong class I complex folding. Longer peptides, specifically the 10mers, were included in this study to expand the pool of possible peptides for analysis and, hence, possible T-cell epitope candidates. For human class I (Chen et al. 1994; Urban et al. 1994; Tynan et al. 2005), binding of peptides other than 9mers has been readily shown with resulting diverse peptide conformations within the HLA class I-binding groove. Longer peptides not only provide a larger pool of combinations of potential peptide sequences and binding configurations (Fig. 2), but also contribute to greater diversity in the center region of the peptide available for TCR recognition as a result of the peptide bulging away from the binding cleft. Hence, depending on the individual binding pattern of the peptide, binding of a 10mer peptide could include additional AAs between the anchors of the bound peptide available for TCR interactions. Such a change in conformation could have the potential to expand pMHC-mediated activation of virus-specific CTLs.

The ability of MHC molecules to bind the same peptide in different combinations, depending on the identity of the peptide anchor residues, would appear to have distinct advantages to the immune system. Based on the PSCPL RB values of the respective pockets expressed by the SLA-1*0401 and SLA-2*0401 molecules, and in combination with the respective 10 AA peptide bound, the model predicts that the two 10mer peptides bind by a position 2/position 10 (P2/P10) or P1/P10 anchor manner (MTAHTITVPY) for SLA-1*0401 and a P3/P10 anchor manner (NTYLSGIAQY) for SLA-2*0401 (Table 1; Pedersen et al. 2011). These binding patterns are only speculations and rely on a comparison of the AA in peptide positions 1–3 with the MHC preferences expressed for the individual AA in P1–3, combined with the comparison of the AA in peptide positions 9 and 10 with the preferences expressed for the individual AA in P9. Future mapping of MHC class I-binding motifs using an X10-based peptide library as compared to exclusively X9 will further illuminate which AA positions of the 10mer peptides account for binding interactions between the peptide residues and the anchors of the MHC class I protein groove.

In conclusion, we determined the binding motif of an additional swine MHC class I molecule, SLA-2*0401. Further, the NetMHCpan prediction algorithm based on human MHC proteins identified peptides from a viral proteome of interest. Based on in silico predictions and in vitro verifications, we identified four FMDV peptides bound by SLA-2*0401: MTAHTITVPY, SSVGVTHGY, YLSGIAQYY and NTYLSGIAQY; and five FMDV peptides bound by SLA-1*0401: TVYNGTSKY, MTAHTITVPY, SSVGVTHGY, YLSGIAQYY and NMTAHTITVPY. Three of these peptides were observed to be commonly shared between the two heavy chain molecules (MTAHTITVPY, SSVGVTHGY and YLSGIAQYY), whereas one peptide (NTYLSGIAQYY) was bound only by the SLA-2*0401 protein and two peptides (TVYNGTSKY and NMTAHTITVPY) were bound only by the SLA-1*0401 protein. All these peptides are candidate T-cell epitopes by virtue of being strongly bound by two of the most highly expressed porcine class I MHC proteins.

Analysis of antigen-specific, MHC I-restricted T cells using MHC tetramers made with the peptides identified here showed that at least one of these, MTAHTITVPY bound by SLA-1*0401, reacts with FMDV-specific T cells (Patch et al. 2011). The reason for including Ebola and V. cholerae peptides in this study was an ambition of adding the SLA-2*0401 molecule to the experimental setup of such tetramer staining analyses. FMDV-specific porcine CTLs should not recognize either Ebola- or V. cholerae-derived peptides bound and presented by the SLA-2*0401 molecule, and hence, these peptides should make for good negative controls. Subsequent studies indicate that other peptides represented in the data presented here are T-cell epitopes, and confirmation of these preliminary results is underway, now also including the SLA-2*0401 molecule. Minimally, these data, together with our previous reports (Patch et al. 2011; Pedersen et al. 2011), show that the approach of using the NetMHCpan prediction algorithm, developed for human MHC molecules, can be effective in predicting MHC peptide interactions in other species.

Acknowledgements

This work was funded by CRIS #1940-32000-053-00D from the Agricultural Research Service, USDA (WTG); by the Danish Council for Independent Research, Technology and Production Sciences (274-09-0281) (GJ); and by the United States National Institutes of Health (NIH) (HHSN2662004000025C) (SB).

Conflict of interest

The authors claim no conflict of interest in the publication of this information.

References

Supporting information

Additional supporting information may be found in the online version of this article.

Appendix S1 The nucleic acid and amino acid sequence of SLA-2*0401 expressed in *E. coli.*

Appendix S2 NetMHCPan version 2.3 predictions

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Published 2012. This article is a U.S. Government work and is in the public domain in the USA., doi: 10.1111/j.1365-2052.2012.02400.x
5. Paper III

An analysis of affinity and stability in the identification of peptides bound by Swine Leukocyte Antigens (SLA) combining matrix- and NetMHCpan based peptide selection

Pedersen LE, Rasmussen M, Harndahl M, Nielsen M, Buus S, Jungersen G.

Manuscript ready for submission to Immunogenetics

In this study SLA:peptide complexes are analyzed with respect to both affinity and complex stability for the three SLA molecules, SLA-1*0401, SLA-2*0401 and SLA-3*0401. By combining PSCPL matrix- and NetMHCpan based peptide predictions we here illustrate a highly efficient approach for selection of potential T cell epitopes. Such combined predictions led to identification of more peptides bound with high affinity and stability than each prediction method alone. In addition, we describe a correlation between low affinity peptides and the production of pSLA complexes of low stability, and show that peptides bound with high affinity may produce both unstable as well as highly stable pSLA complexes.

Furthermore, these studies present the complete nonamer PSCPL binding matrix for the SLA-3*0401 molecule, introducing the use of a novel approach for screening of such SLA binding specificities based on pSLA complex stability instead of affinity.
An analysis of affinity and stability in the identification of peptides bound by Swine Leukocyte Antigens (SLA) combining matrix- and NetMHCpan based peptide selection

Lasse Eggers Pedersen¹, Michael Rasmussen², Mikkel Harndahl³, Morten Nielsen³, Søren Buus², ⁴, and Gregers Jungersen⁵

¹ National Veterinary Institute, Technical University of Denmark
² Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen
³ Center for Biological Sequence Analysis, Technical University of Denmark
⁴ Correspondence to professor Søren Buus, Department of International Health, Immunology and Microbiology, Blegdamsvej 3, 2200 Copenhagen N., Denmark, (s.buus@sund.ku.dk).

Abstract

The affinity and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are important factors in presentation of viral epitopes to cytotoxic T lymphocytes (CTLs) of the adaptive immune system. In swine, such peptide presentations by swine leukocyte antigens (SLA) are crucial for immunity during most viral infections and diseases.

The identification of peptide candidates, derived from viral genomes of interest, for SLA binding and presentation continues to be an exhaustive task seeing hundreds and sometimes even thousands of different peptide sequences available within a single viral proteome.

In this study, we expand the analysis of SLA binding preferences by determining the complete nonamer SLA-3*0401 PSCPL (positional scanning combinatorial peptide library) binding matrix and suggest a method to facilitate the task of specific peptide selection. This was done by combining the ability of such a matrix, to predict peptide candidates for MHC binding, with that of the in silico prediction algorithm NetMHCpan. Analyses of such peptide binding predictions were performed for two additional SLA molecules, the SLA-1*0401 and SLA-2*0401, along with the identification of several virally derived peptide epitope candidates. In addition, a comparison of the affinity and stability of peptide-SLA (pSLA) complexes was performed and a significant observation of peptides being bound by low affinity also produce pSLA complexes of low stability was made. Furthermore, it was found that peptides bound with high affinity produce pSLA complexes of various stabilities ranging from 0 – 200 hours in half-life periods.

In conclusion, the combination of NetMHCpan and SLA PSCPL matrix prediction led to identification of more peptides with high affinity and stability than each prediction method alone. Applying these methods thus constitute a highly cost-effective guide for epitope discovery studies and MHC binding analysis, not only in the case of porcine immunology but for any species of interest.

Key words: MHC, binding predictions, peptide affinity, complex stability

Introduction

MHC class I molecules can be seen as tell-tales of the immune system displaying to the surroundings endogenously derived peptides from processed self- as well as non-self proteins. Recognition of such peptide MHC complexes (pMHC) by specific CTLs can lead to the activation of cytotoxic T cells. Cells infected by an intracellular pathogen will display non-self peptides on their cell surface hereby signaling a state of alert to circulating CTLs leading to subsequent elimination of the infected cells.
Peptide - MHC-I affinity is the primary criteria for presentation of peptides by MHC class I molecules. Once bound, the stability of the pMHC influence the timeframe in which peptides are displayed at the cell surface of antigen presenting cells (APCs), and hence the stability of individual pMHC has a proposed additional impact on the immunogenicity of the peptides, with stably bound peptides being the more immunogenic (Busch and Pamer 1998, Harndahl et al. 2012, van der Burg et al. 1996).

Knowledge about the MHC-I binding specificity is thus paramount in epitope discovery to limit the pool of peptides available for analysis. The peptide binding specificities of the human leukocyte antigen (HLA) molecule have been thoroughly studied and several high performance prediction servers, such as NetMHCpan, exist to predict peptide-HLA binding (Lundegaard et al. 2011, Nielsen et al. 2007, Nielsen et al. 2008, Zhang et al. 2009). However, knowledge of the peptide binding motifs of MHC-I molecules from other species such as livestock is limited, complicating epitope identification.

We recently reported the peptide binding motif of the porcine MHC-I molecules SLA-1*0401 and SLA-2*0401, identified by ELISA based positional scanning combinatorial peptide libraries (PSCPL) (Pedersen et al. 2011, Pedersen et al. 2012). Here, we describe the PSCPL derived peptide binding motif of the SLA-3*0401 molecule using a newly developed methodology based on pMHC-I complex dissociation (Rasmussen et al. 2012). Combining the peptide predictions of the individual binding matrices for SLA-1*0401, SLA-2*0401 and SLA-3*0401 with in silico peptide binding predictions using NetMHCpan (Hoof et al. 2009, Lundegaard et al. 2011) version 2.4, we predicted possible peptide binders from a library of more than 9000 nonameric peptides to investigate if combined predictions were more accurate than using either of the prediction tools alone. Predicted peptides were screened for binding and high affinity binders were identified for SLA-1*0401, SLA-2*0401 and SLA-3*0401. In addition, the stability of pSLA was measured for peptides identified to be bound with high affinity, showing that our recently published peptide-HLA stability assay can easily be modified to measure pMHC stability in other species (Harndahl et al. 2011, Rasmussen et al. 2012). Comparing affinity and stability data identified several high-affinity, and highly stable, peptide binders for all three SLA proteins, and a tendency of peptides being bound with high affinity also produce highly stable pSLA complexes. Despite this it was found that high affinity peptides in general produce pSLA complexes of various stabilities ranging from 0 – 200 hour half-life periods. Furthermore, these analyses revealed a clear correlation between peptides bound with low affinity also produce low stability pSLA complexes illustrating that high affinity peptide binding is indeed a prerequisite for stable interactions. Such data indicate that the methodology presented here is capable of identifying potential CD8+ T-cell epitopes as well as pointing out peptides which are not suitable for the production of stable pSLA complexes.

All together these methods provide state-of-the-art tools for the prediction, analysis and selection of peptides for MHC class I binding, hereby paving the way to actual identification of strongly, and stably, bound peptides with the potential of being viral peptide epitopes. These experiments introduce an expansion of the field of pMHC analysis now to include livestock such as the pig.

Materials and methods

Recombinant construct encoding the SLA-3*0401 protein

Recombinant SLA-3*0401 protein was produced as described elsewhere (Pedersen et al. 2011). Briefly, DNA encoding residues 1 to 276 of the SLA-3*0401 alpha chain (purchased from Genscript) was cloned into a pET28a+ vector (Novagen) upstream of a polytag consisting of a Fxa cleavage site, a biotinylation signal peptide (BSP) and a histidine affinity tag (HAT). Correct constructs were verified by sequencing (ABI Prism 3100Avant, Applied Biosystems) (Hansen et al. 2001). The validated construct of interest was transformed into E. coli BL21(DE3), containing the pACYC184 expression plasmid (Avidity, Denver, CO) encoding an IPTG inducible BirA gene to express biotin-ligase. This leads to almost complete in vivo biotinylation (85 – 100%) of the desired product (Leisner et al. 2008).
Expression and purification of recombinant SLA-3*0401, human- and porcine beta-2 microglobulin (β2m)

SLA-3*0401 heavy chain proteins were produced recombinantly as previously described (Pedersen et al. 2011). E. coli BL21(DE3) cells containing the SLA proteins were lysed in a cell-disrupter (Constant Cell Disruptor Systems set at 2300 bar) and the released inclusion bodies were isolated by centrifugation (Sorval RC6, 20 min, 17000 g). The inclusion bodies were washed twice in PBS, 0.5% NP-40 (Sigma), 0.1% deoxycholic acid (DOC, Sigma) and extracted into Urea-Tris buffer (8M urea, 25mM Tris, pH 8.0).

SLA-3*0401 heavy chain proteins extracted in 8 M urea were purified as previously described for the SLA-1*0401 molecule (Pedersen et al. 2011). In brief, this was done by successive immobilized metal adsorption, hydrophobic interaction-, and eventually Superdex-200 size exclusion chromatography. Throughout purification and storage the MHC-I heavy chain proteins were dissolved in 8 M Urea to ensure denaturation. The pre-oxidized, biotinylated and fully denatured proteins were stored at -20°C in Tris buffered 8 M urea.

Recombinant human- and porcine β2m were expressed and purified as described elsewhere (Ferre et al. 2003, Ostergaard et al. 2001, Pedersen et al. 2011).

Peptides and peptide libraries

All peptides were purchased from Schafer-N, Denmark (www.schafer-n.com). Briefly, they were synthesized by standard 9-fluorenlymethyloxycarbonyl (Fmoc)-chemistry, purified by reversed-phase high-performance liquid chromatography (to at least >80% purity, frequently 95-99% purity), validated by mass spectrometry, and quantified by weight.

Positional scanning combinatorial peptide libraries (PSCPL) were used to determine the SLA-3*0401 binding motif. The experimental strategy of PSCPL has previously been described for both HLA (Stryhn et al. 1996) and SLA (Pedersen et al. 2011) proteins. The individual PSCPL peptide stability analysis was performed using 125I-iodine-labeled porcine β2m (125I- β2m) in a FlashPlate® based proximity assay (Harndahl et al. 2011) explained below.

ELISA peptide affinity analysis

Affinity analysis of peptide interactions with the SLA-1*0401 was performed using a slightly modified version of a previously described immunosorbent assay (Sylvestre-Hvid et al. 2002) most recently described by Pedersen et al. (Pedersen et al. 2012).

Luminescent oxygen channeling assay (LOCI) for peptide affinity analysis

Affinity analysis of peptide interactions with the SLA-3*0401 and SLA-2*0401 were performed using a conformation-dependent anti-SLA monoclonal antibody based LOCI technology as previously described for HLA (Harndahl et al. 2009). In brief, recombinant, biotinylated SLA heavy chains were diluted in buffer (0.1% Lutrol F 68 (BASF, Art. No. S30101. Ludwigshafen, Germany) in PBS, pH 7.2) to a concentration of 2 nM followed by addition of 15 times excess of porcine β2m and a dose titration of peptide, and incubated at 18°C for 48 hours. pSLA complexes were detected using streptavidin (SA) donor beads and an anti-SLA monoclonal antibody (PT85A, VMRD, Pullman, Wash., USA) conjugated to acceptor beads. Beads and pSLA complexes were incubated at 18°C overnight at a final bead concentration of 5 µg/ml, then equilibrated to room temperature 1 hour prior to detection by an EnVision multilabel reader (Perkin Elmer, Boston, USA).

FlashPlate® scintillation proximity assay (SPA) for SLA-3*0401 motif mapping and pSLA stability measures

The measurement of pSLA stability was done as previously described for HLA (Harndahl et al. 2011) using peptide and radiolabeled porcine β2m in a mix with recombinant SLA heavy chain 100-fold diluted in (0.1% Lutrol F 68 (BASF, Art. No. S30101. Ludwigshafen, Germany) in PBS, pH 7.2). pSLA folding reactions were carried out in streptavidin coated scintillation microplates (FlashPlate® PLUS, Perkin Elmer, Boston, USA). Steady-state of the folding reaction was reached by overnight incubation at 18°C at conditions of 30 nM SLA heavy chain, 1 nM (approximately 25,000 cpm) of 125I-β2m and 10 µM peptide. At steady-state unlabeled porcine β2m was
added to a final concentration of 1 μM to prevent re-association of any dissociated 125I-β2m, and the temperature was raised to 37°C. Dissociation of pSLA was monitored continuously on a scintillation multiplate counter (TopCount NTX, Perkin Elmer) modified to operate at 37°C. PSCPL data were analyzed as described previously (Rasmussen et al. 2012) and the obtained binding matrix was visualized by the Seq2Logo server (Thomesen and Nielsen 2012) normalizing the values at each position to 1, using P-weighted Kullback-Leibler logo types and an even amino acid background distribution (0.05 for all amino acids).

Results

Mapping of the SLA-3*0401 peptide binding matrix using PSCPL

We have recently reported the peptide binding specificities of the swine leukocyte antigens, SLA-1*0401 and SLA-2*0401 (Pedersen et al. 2011, Pedersen et al. 2012). These peptide binding specificities were determined by nonameric PSCPL analysis using ELISA. Since then, we have introduced a new method to determine human MHC-I binding specificities (Rasmussen et al. 2012), based on a pMHC-I dissociation assay (Harndahl et al. 2011). This method is based on the dissociation of 125I-radiolabeled human β2m from in situ formed pHLA complexes. By 125I-radiolabeling porcine β2m, we adopted this methodology to allow PSCPL-based determination of the SLA-3*0401 binding matrix, illustrated in figure 1 and Table 1.

PSCPL analysis of the SLA-3*0401 molecule revealed a binding motif with a primary anchor in the position 2 (P2) of the peptide displaying preferences for asparagine (N) and arginine (R) with relative binding (RB) values of 5.6 and 2.3, respectively (Figure 1 and Table 1). This suggests a polar, acidic B-pocket within the SLA-3*0401 peptide binding groove. Auxiliary anchors were observed in P1, P3, P7 and P9 with anchor position (AP) values of 9, 11, 11 and 9, respectively. For P9 it was found that methionine (M), phenylalanine (F) and tyrosine (Y) were preferred with RB values of 2.4, 2.3 and 2.0, respectively (Table 1). Isoleucine (I) and aspartic acid (D) were also accepted in P9 having RB values of 1.8 and 1.5, respectively. Furthermore, it was observed that arginine (R), glutamine (Q), lysine (K) and proline (P) were all disfavored at P9 (RB values of 0.2, 0.3, 0.3 and 0.4, respectively). These results indicate the presence of a hydrophobic F-pocket within the binding groove of SLA-3*0401, although this pocket does not function as a primary anchor for peptide binding which again makes the binding motif for SLA-3*0401 rather atypical when compared to the dominating P2 and P9 anchors that are commonly observed for both SLA and HLA molecules (Kubo et al. 1994, Lamberth et al. 2008, Pedersen et al. 2011, Pedersen et al. 2012, Rammensee et al. 1999, Rapin et al. 2008, Sette and Sidney 1999, Yamada et al. 1999). Instead, a primary anchor was observed only in P2 (AP value of 27), with an auxiliary anchor expressing a preference for tryptophan (W), leucine (L), and phenylalanine (F) in P7 revealing a non-polar E-pocket. Altogether these results indicate that for SLA-3*0401 P2 is the most important peptide position in regard to peptide binding.

Analysis of peptide-SLA affinities

SLA-1*0401 peptide affinity studies were performed using a previously described ELISA (Pedersen et al. 2011), whereas affinity measurements for SLA-2*0401 and SLA-3*0401 were performed by a modified version of a previously published LOCI based MHC-I binding assay (Harndahl et al. 2009), using acceptor bead conjugated antibody PTBSA which enable the capture of correctly folded pSLA on the surface of donor beads leading to a signal read-out once excited by laser (Figure 2). By using a combination of NetMHCPan (with a 2 % rank score threshold) and PSCPL matrix based predictions (with a threshold of 25 corresponding to 0.5 % percentile rank score threshold) a total of 157, 72, and 76 peptides were selected to be tested for their ability to be bound by SLA-1*0401, SLA-2*0401, and SLA-3*0401, respectively (Table 2 and Supporting Table 1 A - C). Note. that the NetMHCPan-2.4 prediction software has been trained on a limited set of SLA binding data consisting of 14 SLA-1*0401 and one SLA-2*0401 (all bound) peptides. From the 157 selected peptides
tested on SLA-1*0401, it was found that 67 peptides were bound with high affinity having K_D values of 50 nM or less, 45 peptides had intermediate binding affinities in the range of 50 – 500 nM, 20 peptides turned out to be bound with weak affinities of 500 – 5000 nM, and 25 peptides were identified as non-binding peptides with affinities >5000 nM (Table 2). In total, it was found that, of the 157 peptides chosen for binding studies, 112 (71.3%) did bind with K_D values below 500 nM. It has previously been described that peptides with K_D affinity values below 500 nM are likely to be considered as immunological relevant (Assarsson et al. 2007). For the SLA-2*0401 molecule, 14 peptides (20%) of the predicted 72 were found to have K_D values lower than 500 nM, whereas 20 and 32 peptides respectively were in the range of being either weak or non-binding peptides. Finally, 76 peptides were tested for SLA-3*0401 binding identifying 20 strongly bound peptides, 9 intermediate and 9 weakly bound peptides, whereas 38 peptides were identified not to be bound by SLA-3*0401 (Table 2) leading to a total of 38% of the peptides selected for the SLA-3*0401 molecule being bound with affinities stronger than 500 nM. Individual peptide sequences, origin, prediction rank scores, and K_D affinity values are shown in Supporting Table 1 A - C. Examples of LOCI dose titration curves for affinity analysis of two individual peptides, MTAAASYARY and KRMMMLNY, bound by SLA-2*0401 and SLA-3*0401, respectively, are shown in Supporting Figure 1 and 2.

Combining PSCPL matrix- and NetMHCpan based predictions

To quantify the complementarities of the PSCPL matrix and NetMHCpan prediction methods, the individual predictions were split into subsets predicted by (a) either the matrix method or the NetMHCpan method, (b) by both the matrix and NetMHCpan methods, or (c) exclusively by one of the two. The result of this analysis is shown in Table 3. From this comparison, it is seen that the two methods are highly complementary when it comes to identification of SLA binding peptides. Depending on the given SLA molecule, only 45–59% of the peptides validated to be bound by SLA are predicted by both methods (Table 3, Sensitivity). Also, it is apparent that not one method is consistently more accurate in identifying SLA peptide binders than the other. For SLA-2*0401 we found that only 2 of the 20 peptides (10%), identified exclusively by the matrix-based method turned out to be bound. For the exclusive NetMHCpan predictions 9 of 25 (36%) were found to bind. In contrast to this, the exclusive matrix-based predictions for the SLA-3*0401 molecule identified 47% binding peptides (8 of 17), whereas the NetMHCpan exclusive predictions for this SLA molecule only identified 11 % binding peptides (4 of 35). The predictive positive value (true positives divided with the predicted positive) for the two methods on the two SLA molecules (SLA-2*0401 and SLA-3*0401) is statistically significant ($p<0.05$ in both cases, comparison of ratias). That is, the predictive positive value of the NetMHCpan method is significantly higher for the SLA-2*0401 molecule compared to SLA-3*0401 and vice versa for the PSCPL matrix method emphasizing the complementarities of the two methods, and underlining the importance of including both to ensure optimal coverage of the binding repertoire of SLA molecules.

pSLA stability analysis

pMHC class stability has been proposed to be a better determinant of immunogenicity rather than binding affinity (Busch and Pamer 1998, Harndahl et al. 2012, Lazarski et al. 2005, Mullbacher et al. 1999, Sant et al. 2005, van der Burg et al. 1996). In order to investigate the stability of pSLA complexes, we modified an existing scintillation proximity assay (SPA) based pMHC dissociation assay (Harndahl et al. 2011) enabling us to measure pSLA stability. Peptides binding with an affinity better than 500 nM to SLA-1*0401, SLA-2*0401 or SLA-3*0401 were tested for their pSLA stability. The correlation between pSLA affinity and stability is shown for all three SLA molecules in Figure 3 A – C. It was found that the pSLA stability ranged from extremely stable (7% of 158 hours) to fairly unstable (7% of 0.18 hours). The correlation between binding affinity and stability was statistically significant for all three SLA molecules (Spearman’s rank correlations of 0.39 (SLA-2*0401) to 0.78 (SLA-1*0401), and with $p<0.05$ in all cases, exact permutation test). In general, it was seen that
peptides bound with high affinities were also generating highly stable pSLA complexes with $T_{1/2} \geq 1$ hour (Figure 3 A – B). It was observed that SLA-3*0401 complexes were more unstable than the equivalent pSLA-1*0401 and pSLA-2*0401, having only six peptides with stability $T_{1/2}$ periods ranging between 1.1 and 6.7 hours (Figure 3 C + Supporting Table 1 C). In comparison, the SLA-1*0401 had 65 peptides with stabilities ranging from $T_{1/2}$ of 1 hour to more than 158 hours, and several of those had $T_{1/2}$ of more than 10 hours (Figure 3 A + Supporting Table 1 A). For SLA-2*0401, 18 of the 20 peptide with measured binding affinity stronger than 500 nM were shown to be stably bound with $T_{1/2}$ of more than 1 hour (Supporting Table 1 B). This difference between fraction of stable binders between the SLA-3*0401 and the two other SLA molecules is highly statistical significant (p<0.01, comparison of ratio). Note, that analysis here for SLA-2*0401 and SLA-3*0401 is limited to relative few peptides identified with binding affinities stronger than 500 nM. Additional analyses including a larger number of peptides would be necessary to draw a more general conclusion in regard to those two molecules and their pSLA complex stabilities. Such analyses are likely to confirm the pattern observed here leading to the identification of several more highly stable pSLA-2*0401 but only a few additional stable pSLA-3*0401 due to the unique binding characteristics of the SLA-3*0401 molecule expressing only one dominating anchor in P2 (Table 1) as discussed below. Despite this, it was still possible to identify peptides that were bound by the SLA-3*0401 molecule with high affinity and producing highly stable pSLA, an example being the peptide sequence RNMSRIFPY, derived from Encephalitozoon cuniculi IEDB ID: 93734, (2011). This peptide is an almost perfect match for the SLA-3*0401 binding motif (Table 1) and was also predicted to be bound by both the matrix and NetMHCpan prediction rank scores (Supporting Table 1 C). Furthermore, in vitro analysis verified this sequence as an extremely strong and stable binding peptide with a K_D value of 1 nM and a stability half-life of $T_{1/2} = 6.7$ hours (Supporting Table 1 C). Such data confirm the ability of the prediction approach, combining specific PSCPL binding matrix and in silico predictions, to identify potential T cell epitopes.

Discussion

The mapping of the complete nonamer SLA-3*0401 peptide binding matrix revealed a single dominating anchor in P2 of the binding groove (Table 1). Instead of a dominating P9 anchor which is commonly seen for other SLA and HLA proteins (Lamberth et al. 2008, Pedersen et al. 2011, Pedersen et al. 2012, Rammensee et al. 1999, Rapin et al. 2008, Sette and Sidney 1999), it was found that this molecule displayed a rather atypical auxiliary peptide anchor for P7 within the E-pocket of the binding groove.

We here present state-of-the-art tools for peptide prediction, selection, and binding analysis – both in terms of affinity and stability. These analyses were based on combining individual SLA binding matrix predictions with those of NetMHCpan, and further test binding affinity and stability using homogenous, high throughput LOCI and SPA assays, respectively. The combination of the two individual prediction methods resulted in an enhancement of the overall peptide selection in the range of a 10 to 45 % increase in the final number of peptides identified to be bound (Supporting Table 1 A - C). Confirming the advantage gained by combining the two prediction tools is seen for peptides TSDGFINGW and ITDYYVGY. These peptides were both identified to be bound with high affinity and to form highly stable pSLA but while TSDGFINGW only came out as a candidate ligand for SLA-1*0401 by the matrix-based predictions (matrix score of 195, NetMHCpan rank of 15.00), the ITDYYVGY peptide was predicted exclusively by the NetMHCpan (matrix score of 0, NetMHCpan rank of 0.03), (Supporting Table 1 A). Hence, combining the two prediction tools resulted in inclusion of both peptides of which one of them would have been lost, were the predictions only performed by one of the predictors. Similar examples can be found in Supporting Table 1 A – C. We observe a general trend that the overlap between the NetMHCpan and PSCPL matrix-based predictions is highest for the SLA molecule where peptide-binding data form part of the training data for the NetMHCpan method. This is consistent with earlier findings (Rasmussen et al. 2012), and suggests that as data for constructing the pan-specific predictor are enriched with SLA peptide
binding measurements, identified as described here using both the PSCPL and pan-specific predictions, the NetMHCpan method will be able to learn the SLA binding repertoire described by both methods. By way of example is, that the correlation between predictions performed by the PSCPL matrix and NetMHCpan methods, increase by 33 % when the 76 SLA-3*0401 binding measurements obtained in this study are included in the training data (data not shown).

Analyzing the correlation between pSLA affinity and stability for the three SLA proteins revealed a general trend of peptides being bound with high affinity, were also producing high stability pSLA (Figure 3 A – C). Still it was found that the individual pSLA-3*0401 turned out to display significantly lower T½ values than those of both the pSLA-1*0401 and pSLA-2*0401. Several factors, which could cause such a tendency, remain to be addressed in detail. Factors such as the low number of peptides tested, limitations in regard to the diversity of peptides in the in-house peptide library (comprised of some 9000 different peptides, where no peptides have the pattern of N/R at P2 and D at P9, as compared to “the whole universe” of peptides) or the fact that SLA-3*0401 has a lack of the otherwise commonly expressed P9 anchor in regard to peptide binding, could all be causative for the production of low stability pSLA-3*0401 regardless of the peptide offered. As seen in Supporting Tables 1 A + B, a trend for peptides satisfying both the P2 and P9 anchor of SLA-1*0401 and SLA-2*0401, as well as the P3 anchor of SLA-1*0401, is that they are bound with higher stability, as compared to peptides that satisfy only one of the two anchors (or only two of the three anchors in regard to SLA-1*0401) which tend to be bound with lower stability. This observation is consistent with previous observations made for the human class I molecule, HLA-A*02:01 (Harndahl et al. 2012). Hence, for each anchor satisfied the stability of the bound peptide seems to increase, which could explain why the “one-anchor-only” molecule, SLA-3*0401, produces mostly low stable pSLA. Speculating the biological relevance, expression of a single major anchor for P2 could be a phenotypic preference in regard to SLA-3*0401 leading to faster turnover rates in the sense of peptide association and dissociation, which again would claim pSLA-3*0401 of lower stabilities as compared to other molecules showing slow peptide turnovers but higher stabilities. An SLA allele repertoire combining fast-unstable and slow-stable pSLA could be an advantage for the host in the sense of effective and diverse protection against intruding pathogens expressing both fast, and diverse, peptide turnovers as well as stable peptide presentation.

Having determined the SLA-3*0401 binding matrix and knowing how to specifically map such matrices can be of great value when screening for peptide candidates. Not only does it provide an overview and insight of specific biochemical features within the binding groove, it also contributes to the overall predictions of possible peptide candidates for binding. The prediction tool combination presented here prove extremely effective in the initial steps of identifying CTL peptide epitopes now adding swine to the list of species that can be addressed, screening virtually any pathogen of interest. Furthermore, improvement of the NetMHCpan alone, which has only been trained on a very limited number of peptides for SLA-1*0401 and SLA-2*0401 (15 and 1, respectively) and none for the SLA-3*0401 so far, could also benefit the process of selecting peptide candidates for pMHC binding studies – especially when studying MHC molecules for which peptide binding matrixes have not yet been defined. The data achieved in this study, as well as data recently obtained for cattle MHC-I (BoLA) by the group at the University of Copenhagen, will further contribute to the constant improvement of the NetMHCpan by data training.

Finally, we here present several peptides derived from bacteria and viruses such as foot-and-mouth disease virus (FMDV) and Influenza A virus which could have a great relevance for future studies in regard to disease in livestock animals, bound with both high affinity and stability by three of the most commonly expressed SLA molecules worldwide (Supporting Table 1 A - C). Such peptides can be categorized as potential CTL epitopes expressing the ability to generate stable pSLA, in that they are likely to be targets for circulating CTLs, eventually leading to
cell activation and elimination of pathogenic intruders. Clarifying details concerning the peptide binding properties of swine MHC class I molecules could contribute tremendously to epitope discoveries as well as to the overall validation and analysis of currently available or newly developed livestock vaccines. Furthermore, knowledge of SLA binding motifs could improve current studies and surveillance of porcine immune responses to agricultural threats such as foot-and-mouth disease virus (FMDV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus and others, in what seems to be a continuous struggle to keep animals healthy and protected to avoid substantial outbreaks.

Acknowledgements

The authors would like to thank Lise Lotte Bruun Nielsen and Panchale Olsen for their expert experimental support. This work was supported by the Danish Council for Independent Research, Technology and Production Sciences (274-09-0281).

References

Figures

Figure 1 Binding motif of the SLA-3*0401 molecule determined by pMHC dissociation driven PSCPL analysis and displayed as logos. Each logo represents a single amino acid. The larger the size of the amino acid representative letter, the higher the affinity for binding. Positive amino acid logos indicate slow pMHC dissociation rates and high binding affinity. Negative amino acid logos indicate fast pMHC dissociation rates and low binding affinity. The visualization was performed by the Seq2Logo server (Thomsen and Nielsen 2012) normalizing scores for each peptide position to one, using P-weighted Kullback-Leibler logo types with an even amino acid background distribution (0.05 for all amino acids).

Figure 2 Illustration of the PT85A based LOCI principle for analysis of SLA-2*0401 and SLA-3*0401 peptide affinity. Streptavidin (blue) coated donor beads enable the capture of biotinylated pSLA (purple (biotin), green (MHC/β2m), red (bound peptide)). Acceptor beads were coated with a mouse-anti-SLA monoclonal antibody, PT85A (carbon grey). Recognition of the pSLA by PT85A brings the donor and acceptor beads in close proximity leading to the transfer of singlet oxygen (\(^{1}\text{O}_2\)) from the excited donor bead to the acceptor bead, which results in detectable emission from the acceptor bead (orange).
Figure 3 A - C pSLA affinity versus stability for predicted peptide candidates with measured K_D values below 500 nM. A: SLA-1*0401 (n: 110). B: SLA-2*0401 (n: 20). C: SLA-3*0401 (n: 29).
Supporting figures

Supporting Figure 1 LOCI based titration curve for affinity analysis of the SLA-2*0401 binding of peptide MTAASYARY (K_D 75 nM, $T_1/2$ of 3.8 hours).

Supporting Figure 2 LOCI based titration curve for affinity analysis of the SLA-3*0401 binding of peptide KRMMMNLNY (K_D 4 nM, $T_1/2$ of 1.1 hours).
Table 1

The complete nonamer SLA-3*0401 binding matrix as determined by the PSCPL approach. RB values greater than 2 are defined as favored AAs for peptide binding (marked in bold), whereas values below 0.5 are defined as destabilizing (marked in italics). (Laumoller et al. 2001, Stryhn et al. 1996). As previously defined, AP-values above 15 are considered as dominating anchors of importance illustrated by underlining (Lamberth et al. 2008).

<table>
<thead>
<tr>
<th>Amino acid position in peptide</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>C</td>
<td>0.4</td>
<td>0.6</td>
<td>0.5</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>D</td>
<td>0.9</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7</td>
<td>0.5</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>E</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
<td>0.9</td>
<td>0.5</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>F</td>
<td>0.6</td>
<td>0.5</td>
<td>3.0</td>
<td>1.7</td>
<td>1.6</td>
<td>0.8</td>
<td>2.2</td>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>G</td>
<td>0.9</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>H</td>
<td>0.8</td>
<td>0.5</td>
<td>0.8</td>
<td>1.3</td>
<td>1.1</td>
<td>1.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>I</td>
<td>0.7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
<td>1.1</td>
<td>1.0</td>
<td>0.6</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>K</td>
<td>2.2</td>
<td>0.7</td>
<td>0.6</td>
<td>1.8</td>
<td>0.7</td>
<td>1.5</td>
<td>0.4</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>L</td>
<td>1.7</td>
<td>0.5</td>
<td>1.1</td>
<td>1.4</td>
<td>0.9</td>
<td>1.1</td>
<td>2.1</td>
<td>1.4</td>
<td>0.9</td>
</tr>
<tr>
<td>M</td>
<td>1.6</td>
<td>0.5</td>
<td>1.4</td>
<td>1.3</td>
<td>1.1</td>
<td>1.2</td>
<td>1.9</td>
<td>0.7</td>
<td>2.4</td>
</tr>
<tr>
<td>N</td>
<td>0.6</td>
<td>5.6</td>
<td>1.2</td>
<td>0.9</td>
<td>1.7</td>
<td>1.1</td>
<td>0.6</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>P</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Q</td>
<td>0.5</td>
<td>0.7</td>
<td>0.5</td>
<td>1.1</td>
<td>0.8</td>
<td>1.1</td>
<td>0.7</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>R</td>
<td>3.1</td>
<td>2.3</td>
<td>2.8</td>
<td>1.8</td>
<td>2.4</td>
<td>1.5</td>
<td>0.7</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>S</td>
<td>0.8</td>
<td>1.3</td>
<td>0.6</td>
<td>0.8</td>
<td>0.7</td>
<td>1.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>T</td>
<td>1.1</td>
<td>1.3</td>
<td>0.7</td>
<td>0.8</td>
<td>0.6</td>
<td>1.1</td>
<td>0.6</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>V</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>W</td>
<td>0.6</td>
<td>0.5</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>0.8</td>
<td>3.4</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Y</td>
<td>0.9</td>
<td>0.6</td>
<td>1.6</td>
<td>1.2</td>
<td>1.6</td>
<td>1.0</td>
<td>0.8</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Sum</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

| AP-value | 9 | 27 | 11 | 4 | 5 | 1 | 11 | 3 | 9 |

Table 2

Peptide affinity analysis of peptides predicted for SLA binding by the NetMHCpan or PSCPL matrix prediction methods. The total numbers of identified strong ($K_o \leq 50$ nM), intermediate ($K_o 50 - 500$ nM), and weak ($K_o 500 - 5000$) as well as non-binding ($K_o \geq 5000$ nM) peptides are indicated for each SLA molecule.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>≤ 50</th>
<th>50 - 500</th>
<th>500 - 5000</th>
<th>≥ 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA-1*0401</td>
<td>67</td>
<td>45</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>SLA-2*0401</td>
<td>6</td>
<td>14</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>SLA-3*0401</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>PSCP/NetMHCPan prediction</td>
<td>Peptides predicted by either PSCP/NetMHCPan</td>
<td>Peptides bound</td>
<td>Sensitivity</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>----------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>SLA-1*0401</td>
<td>157</td>
<td>112 (71.3%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>SLA-2*0401</td>
<td>72</td>
<td>20 (27.8%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>SLA-3*0401</td>
<td>76</td>
<td>29 (38.2%)</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combined prediction</th>
<th>Peptides predicted by PSCP/NetMHCPan</th>
<th>Peptides bound</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA-1*0401</td>
<td>61</td>
<td>53 (86.9%)</td>
<td>0.473</td>
</tr>
<tr>
<td>SLA-2*0401</td>
<td>27</td>
<td>9 (33.3%)</td>
<td>0.450</td>
</tr>
<tr>
<td>SLA-3*0401</td>
<td>24</td>
<td>17 (70.8%)</td>
<td>0.586</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NetMHCPan prediction</th>
<th>Peptides predicted by NetMHCPan exclusively</th>
<th>Peptides bound</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA-1*0401</td>
<td>76</td>
<td>44 (57.9%)</td>
<td>0.393</td>
</tr>
<tr>
<td>SLA-2*0401</td>
<td>25</td>
<td>9 (36.0%)</td>
<td>0.450</td>
</tr>
<tr>
<td>SLA-3*0401</td>
<td>35</td>
<td>4 (11.4%)</td>
<td>0.138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PSCP/NetMHCPan prediction</th>
<th>Peptides predicted by PSCP matrix exclusively</th>
<th>Peptides bound</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA-1*0401</td>
<td>20</td>
<td>15 (75.0%)</td>
<td>0.134</td>
</tr>
<tr>
<td>SLA-2*0401</td>
<td>20</td>
<td>2 (10.0%)</td>
<td>0.100</td>
</tr>
<tr>
<td>SLA-3*0401</td>
<td>17</td>
<td>8 (47.1%)</td>
<td>0.276</td>
</tr>
</tbody>
</table>

Table 3 Comparing abilities of the PSCP matrix- and NetMHCPan based prediction methods to identify true binding peptides for SLA-1*0401, SLA-2*0401 and SLA-3*0401. The sensitivity of each prediction scenario is given as (true positives)/(actual positives), i.e. the share of all peptides actually identified to be bound (from the pool of PSCP matrix or NetMHCPan predicted candidates), that were also found to be so within the pool of peptides predicted by the respective method exclusively.
<table>
<thead>
<tr>
<th>Peptide amino acid sequence</th>
<th>Origin/Uniprot ID/Position</th>
<th>PSCPL matrix</th>
<th>NetMHCpan</th>
<th>Affinity (Ko, nM)</th>
<th>Stability (T1/2, h)</th>
<th>Predicted by PSCPL matrix</th>
<th>Predicted by NetMHCpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERGLAFF</td>
<td>Andes virus/Q8R6M5/1293</td>
<td>679</td>
<td>2.00 (WB)</td>
<td>2</td>
<td>22.69</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>STAPTSGMF</td>
<td>NA</td>
<td>186</td>
<td>0.40 (WB)</td>
<td>2</td>
<td>7.30</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GDDGFAYY</td>
<td>SARS-like coronavirus/Q1516/187</td>
<td>65</td>
<td>0.08 (WB)</td>
<td>2</td>
<td>158.75</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAUSEFAYY</td>
<td>NA</td>
<td>170</td>
<td>1.00 (WB)</td>
<td>2</td>
<td>14.71</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VLDNMHIVY</td>
<td>Variola virus/Q8R9J1/104</td>
<td>51</td>
<td>0.80 (WB)</td>
<td>2</td>
<td>25.12</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TIDKESLPY</td>
<td>Variola virus/Q6S24/75</td>
<td>172</td>
<td>0.25 (SB)</td>
<td>3</td>
<td>16.68</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MSDFENYY</td>
<td>Itatolytina/Q1516/441</td>
<td>84</td>
<td>0.80 (WB)</td>
<td>3</td>
<td>49.13</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TSDGFINOW</td>
<td>Variola virus/Q6S88/79</td>
<td>195</td>
<td>15.00 (WB)</td>
<td>3</td>
<td>5.34</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TDFU4PLW</td>
<td>Herpesvirus/Q3S25/237</td>
<td>185</td>
<td>0.80 (WB)</td>
<td>3</td>
<td>65.21</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>QTCDFLPPY</td>
<td>SARS-CoV/Q029J1/55</td>
<td>89</td>
<td>3.00 (WB)</td>
<td>3</td>
<td>4.21</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ITDIFVQYY</td>
<td>Keuschergia coli/Q3C76/23</td>
<td>0</td>
<td>0.03 (SB)</td>
<td>4</td>
<td>13.09</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SVDFEYYH</td>
<td>NA</td>
<td>353</td>
<td>0.40 (SB)</td>
<td>4</td>
<td>35.71</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KLOANLIPP</td>
<td>Salmonella typhi/Q6S2M/132</td>
<td>230</td>
<td>1.00 (WB)</td>
<td>4</td>
<td>16.26</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NTDAFSHEY</td>
<td>Variola virus/Q355/184</td>
<td>171</td>
<td>0.40 (SB)</td>
<td>4</td>
<td>6.03</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>KLFDFNLKK</td>
<td>Marburg virus/Q6S24/75</td>
<td>140</td>
<td>3.00 (WB)</td>
<td>4</td>
<td>32.39</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>GVEPOAFY</td>
<td>Nycobacterium tuberculosis/Q3C8/150</td>
<td>175</td>
<td>0.40 (SB)</td>
<td>4</td>
<td>5.74</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MTAHVVYY</td>
<td>Foot-and-mouth disease virus strain A24 P1 protein</td>
<td>1</td>
<td>0.01 (SB)</td>
<td>4</td>
<td>7.23</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SVEWKLPO</td>
<td>Dengue virus type 5/Q6S25/144</td>
<td>93</td>
<td>2.00 (WB)</td>
<td>5</td>
<td>53.56</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VIDEFPLY</td>
<td>Sanguinella esculenta/Q3C8/123</td>
<td>67</td>
<td>0.01 (SB)</td>
<td>5</td>
<td>12.33</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MEOCFLLY</td>
<td>Pseudomonas pseudoalcaligenes/Q6S25/356</td>
<td>112</td>
<td>0.17 (SB)</td>
<td>5</td>
<td>8.98</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EVAGGSGF</td>
<td>Nycobacterium tuberculosis/Q6S25/706</td>
<td>171</td>
<td>0.15 (SB)</td>
<td>6</td>
<td>3.01</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HIXGHCY</td>
<td>Variola virus/Q6S25/714</td>
<td>184</td>
<td>1.00 (WB)</td>
<td>6</td>
<td>12.14</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FLYPKFY</td>
<td>Escherichia coli/B3C476/239</td>
<td>0</td>
<td>0.03 (SB)</td>
<td>7</td>
<td>38.25</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LHDGFYPY</td>
<td>Lassa virus/Q6S25/140</td>
<td>213</td>
<td>0.30 (WB)</td>
<td>7</td>
<td>5.88</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>YTDIHYDDY</td>
<td>Francisella tularensis subsp. tularensis/A763/332</td>
<td>5</td>
<td>0.03 (SB)</td>
<td>7</td>
<td>10.34</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ATDFARYY</td>
<td>NA</td>
<td>353</td>
<td>0.40 (SB)</td>
<td>4</td>
<td>35.71</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RVERIKSEY</td>
<td>Yellow fever virus/Q6S2/281</td>
<td>85</td>
<td>1.50 (WB)</td>
<td>8</td>
<td>29.52</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SDGKIVF</td>
<td>Yellow fever virus/Q6S25/123</td>
<td>214</td>
<td>2.00 (WB)</td>
<td>8</td>
<td>2.07</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MDWNVHY</td>
<td>Variola virus/Q6S25/114</td>
<td>144</td>
<td>0.50 (WB)</td>
<td>8</td>
<td>87.80</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VDGFPPV</td>
<td>Variola virus/Q6S22/239</td>
<td>162</td>
<td>0.30 (SB)</td>
<td>10</td>
<td>4.15</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ATEPVQGYY</td>
<td>Ebola virus/Q6S27/205</td>
<td>128</td>
<td>0.30 (SB)</td>
<td>10</td>
<td>4.15</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VVGLAKMY</td>
<td>Tulia virus/Q6S25/105</td>
<td>120</td>
<td>0.80 (WB)</td>
<td>10</td>
<td>15.11</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GDDGMKLY</td>
<td>Nycobacterium tuberculosis/Q6S25/218</td>
<td>226</td>
<td>2.00 (WB)</td>
<td>10</td>
<td>12.52</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AGAAALAAY</td>
<td>Shigella sonnei/Q3T76/42</td>
<td>80</td>
<td>0.03 (SB)</td>
<td>11</td>
<td>2.46</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ARFLAPY</td>
<td>NA</td>
<td>14</td>
<td>0.03 (SB)</td>
<td>11</td>
<td>0.85</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>YVIFLHYYY</td>
<td>NA</td>
<td>145</td>
<td>0.40 (SB)</td>
<td>12</td>
<td>13.14</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MISERHYY</td>
<td>NA</td>
<td>93</td>
<td>0.17 (SB)</td>
<td>12</td>
<td>3.98</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SVANKPFF</td>
<td>Yellow fever virus/Q6S2/2440</td>
<td>174</td>
<td>3.00 (WB)</td>
<td>12</td>
<td>4.44</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IVDONPQDDY</td>
<td>Influenza A virus/gmbans AVP/248/107</td>
<td>75</td>
<td>3.00 (WB)</td>
<td>12</td>
<td>3.89</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>QTONDDMFW</td>
<td>Recherchia coli/R3BV0/932</td>
<td>71</td>
<td>0.15 (WB)</td>
<td>13</td>
<td>36.67</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ITDITKYLY</td>
<td>Mytilus anthracis/R4G1/50</td>
<td>96</td>
<td>0.05 (SB)</td>
<td>14</td>
<td>4.78</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>YVVFVDSLQ</td>
<td>Variola virus/Q6S2/504</td>
<td>0</td>
<td>0.01 (SB)</td>
<td>14</td>
<td>0.21</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ATADAMFY</td>
<td>Ebola virus/Q6S25/114</td>
<td>8</td>
<td>0.02 (SB)</td>
<td>15</td>
<td>6.91</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>QENIFYFLY</td>
<td>Ixodes lambia/ABS45/318</td>
<td>5</td>
<td>0.80 (WB)</td>
<td>15</td>
<td>0.15</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LTMTHMLAY</td>
<td>SARS-CoV/Q029J1/55</td>
<td>156</td>
<td>0.03 (SB)</td>
<td>16</td>
<td>11.41</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LSDDAVCYY</td>
<td>SARS-like coronavirus/Q6S25/512</td>
<td>98</td>
<td>0.50 (WB)</td>
<td>16</td>
<td>10.38</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RIAFPFFKY</td>
<td>Brucella suis/Q6S25/115</td>
<td>92</td>
<td>0.80 (WB)</td>
<td>16</td>
<td>16.88</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NVSTYIHY</td>
<td>Nycobacterium tuberculosis/Q4M5/1479</td>
<td>68</td>
<td>0.30 (SB)</td>
<td>17</td>
<td>3.86</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ETIAGYMY</td>
<td>Recherchia coli/R4G1/724</td>
<td>160</td>
<td>2.00 (WB)</td>
<td>18</td>
<td>1.14</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LTDSQPPSY</td>
<td>Nycobacterium tuberculosis/Q4M3/1298</td>
<td>87</td>
<td>0.80 (WB)</td>
<td>18</td>
<td>4.06</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>QTONGQAVF</td>
<td>Rous nude virus strain PF10/ARMS/255</td>
<td>135</td>
<td>1.50 (WB)</td>
<td>18</td>
<td>27.51</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>QTOIPLWQY</td>
<td>Vibrio vulnificus/Q6S25/50</td>
<td>76</td>
<td>0.40 (WB)</td>
<td>20</td>
<td>0.80</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LLOGUWWY</td>
<td>Nycobacterium tuberculosis/Q4M5/247</td>
<td>252</td>
<td>1.00 (WB)</td>
<td>22</td>
<td>4.38</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Peptide amino acid sequence</td>
<td>Origin/UniProt ID/Position</td>
<td>PSCP matrix</td>
<td>NetMHCpan</td>
<td>Affinity (Kd, nM)</td>
<td>Stability (T1/2, h)</td>
<td>Predicted by PSCP</td>
<td>Predicted by NetMHCpan</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>NA</td>
<td>0.08 (SB)</td>
<td>43</td>
<td>4.59</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VVVYRGTTTY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.08 (SB)</td>
<td>37</td>
<td>1,72</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FTQWQGVYY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.08 (SB)</td>
<td>40</td>
<td>0.36</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CSQTYVQIVQ</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.03 (SB)</td>
<td>32</td>
<td>1.48</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VYFPGDPNY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.05 (SB)</td>
<td>37</td>
<td>1,25</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CSQDYVAVY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.03 (SB)</td>
<td>32</td>
<td>1.44</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VEOVGKTVYY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.05 (SB)</td>
<td>32</td>
<td>0.47</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CTQKALAY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.03 (SB)</td>
<td>32</td>
<td>0.77</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ATVQKQQGY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.05 (SB)</td>
<td>32</td>
<td>0.86</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FTQWQGVYY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.03 (SB)</td>
<td>32</td>
<td>0.36</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CSQDYVAVY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.03 (SB)</td>
<td>32</td>
<td>1.44</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VYFPGDPNY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.05 (SB)</td>
<td>37</td>
<td>1,25</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CSQDYVAVY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.03 (SB)</td>
<td>32</td>
<td>1.44</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VYFPGDPNY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.05 (SB)</td>
<td>37</td>
<td>1,25</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CSQDYVAVY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.03 (SB)</td>
<td>32</td>
<td>1.44</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VYFPGDPNY</td>
<td>SARS-like coronavirus/P0C6W6/550</td>
<td>0.05 (SB)</td>
<td>37</td>
<td>1,25</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Peptide amino acid sequence</td>
<td>Origin/Uniprot ID/Position</td>
<td>PSCP L matrix</td>
<td>NetMHCpan</td>
<td>Affinity (Kd, nM)</td>
<td>Stability (T1/2, h)</td>
<td>Predicted by PSCP L matrix</td>
<td>Predicted by NetMHCpan</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>ASYQFQLPY</td>
<td>Vibrio cholerae/A6Y7B0/208</td>
<td>0.01 (SB)</td>
<td>18</td>
<td>51.00</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MNYAAAAAY</td>
<td>NA</td>
<td>456 (SB)</td>
<td>22</td>
<td>131.70</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>YTIGIGAFY</td>
<td>NA</td>
<td>1 (SB)</td>
<td>25</td>
<td>10.80</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SSLPSYAAY</td>
<td>SARS-like coronavirus/P0C6T7/3924</td>
<td>0.15 (SB)</td>
<td>30</td>
<td>1.70</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IITYQLAGY</td>
<td>Variola virus/Q0N4Z8/220</td>
<td>0.40 (SB)</td>
<td>38</td>
<td>1.30</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ITLVPAGY</td>
<td>Salmonella typhi/Q83T18/304</td>
<td>0.12 (SB)</td>
<td>44</td>
<td>22.00</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MVASQLARY</td>
<td>Yersinia enterocolitica/A1JQV7/564</td>
<td>0.08 (SB)</td>
<td>56</td>
<td>3.90</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>QSAANMYIY</td>
<td>Variola virus/Q89107/120</td>
<td>0.01 (SB)</td>
<td>178</td>
<td>1.50</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MTAAQIRRY</td>
<td>NA</td>
<td>76 (SB)</td>
<td>32.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TTFTTFANY</td>
<td>NA</td>
<td>1 (SB)</td>
<td>20000</td>
<td>0.01</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MTGGLGGY</td>
<td>NA</td>
<td>0.12 (SB)</td>
<td>20000</td>
<td>0.01</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HSYFSSYY</td>
<td>NA</td>
<td>4 (SB)</td>
<td>20000</td>
<td>0.01</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VSYAAAAAY</td>
<td>NA</td>
<td>89 (SB)</td>
<td>386</td>
<td>7.80</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NQDLNGNWY</td>
<td>NA</td>
<td>93 (SB)</td>
<td>1,70</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MTRGLLGSY</td>
<td>West Nile virus strain PTRoxo/A8KCE3/1531</td>
<td>0.03 (SB)</td>
<td>72</td>
<td>1.00</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MTAASYARY</td>
<td>NA</td>
<td>56 (SB)</td>
<td>22.00</td>
<td>6,20</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>YFASFAQLFY</td>
<td>NA</td>
<td>66 (SB)</td>
<td>32.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GTEYRLTLY</td>
<td>NA</td>
<td>191 (SB)</td>
<td>20000</td>
<td>0.01</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ILTMPLFY</td>
<td>NA</td>
<td>189 (SB)</td>
<td>3.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TSSARSSEW</td>
<td>NA</td>
<td>189 (SB)</td>
<td>3.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NMAKXVQOF</td>
<td>NA</td>
<td>76 (SB)</td>
<td>32.00</td>
<td>20000</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LTAVCFPY</td>
<td>NA</td>
<td>1 (SB)</td>
<td>20000</td>
<td>0.01</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Supporting Table 1 B

<table>
<thead>
<tr>
<th>Peptide amino acid sequence</th>
<th>Origin/Uniprot ID/Position</th>
<th>PSCP L matrix</th>
<th>NetMHCpan</th>
<th>Affinity (Kd, nM)</th>
<th>Stability (T1/2, h)</th>
<th>Predicted by PSCP L matrix</th>
<th>Predicted by NetMHCpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSWPAAIDW</td>
<td>NA</td>
<td>456 (SB)</td>
<td>25</td>
<td>10.80</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>YSSPHLLRY</td>
<td>NA</td>
<td>138 (SB)</td>
<td>8.00</td>
<td>3.90</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KSWPAAIDW</td>
<td>NA</td>
<td>138 (SB)</td>
<td>8.00</td>
<td>3.90</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SLRPNDIVY</td>
<td>NA</td>
<td>456 (SB)</td>
<td>22</td>
<td>131.70</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ISRQIHWCW</td>
<td>NA</td>
<td>77 (SB)</td>
<td>170</td>
<td>1.50</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VSSNQNLKY</td>
<td>NA</td>
<td>189 (SB)</td>
<td>386</td>
<td>7.80</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>YSYPtvTNY</td>
<td>Ebola virus/AY3941/57</td>
<td>4.00 (SB)</td>
<td>195</td>
<td>93.00</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FTRFVTVFY</td>
<td>NA</td>
<td>7 (SB)</td>
<td>212</td>
<td>2.00</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>YSIPQNLKY</td>
<td>NA</td>
<td>189 (SB)</td>
<td>386</td>
<td>7.80</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VIFVYVIKY</td>
<td>NA</td>
<td>170 (SB)</td>
<td>170</td>
<td>1.50</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VSTPNFY</td>
<td>NA</td>
<td>170 (SB)</td>
<td>170</td>
<td>1.50</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VSSNQNLKY</td>
<td>NA</td>
<td>189 (SB)</td>
<td>386</td>
<td>7.80</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KSWPAAIDW</td>
<td>NA</td>
<td>456 (SB)</td>
<td>22</td>
<td>131.70</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>YSSPHLLRY</td>
<td>NA</td>
<td>138 (SB)</td>
<td>8.00</td>
<td>3.90</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KSWPAAIDW</td>
<td>NA</td>
<td>138 (SB)</td>
<td>8.00</td>
<td>3.90</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Peptide amino acid sequence</td>
<td>Origin/Uniprot ID/Position</td>
<td>PSCP L matrix</td>
<td>NetMHCpan</td>
<td>Affinity (Kd, nM)</td>
<td>Stability (T1/2, h)</td>
<td>Predicted by PSCP L matrix</td>
<td>Predicted by NetMHCpan</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>QTYMYTGQY</td>
<td>NA</td>
<td>9</td>
<td>0.03 (SB)</td>
<td>1733</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RYQAQQVEW</td>
<td>NA</td>
<td>102</td>
<td>1.50 (WB)</td>
<td>4093</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>YANMWSLMY</td>
<td>NA</td>
<td>9</td>
<td>0.03 (SB)</td>
<td>4272</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>YSAQLYIFY</td>
<td>NA</td>
<td>48</td>
<td>1.00 (WB)</td>
<td>3654</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VTEP7UAQY</td>
<td>NA</td>
<td>102</td>
<td>1.50 (WB)</td>
<td>4093</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>H6ATGQYQF</td>
<td>NA</td>
<td>119</td>
<td>3.00</td>
<td>2120</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TT6YQFHQY</td>
<td>NA</td>
<td>46</td>
<td>5.00</td>
<td>2158</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>T6MQYFQVY</td>
<td>NA</td>
<td>225</td>
<td>0.03 (SB)</td>
<td>2846</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>T6M6SWLTY</td>
<td>NA</td>
<td>3</td>
<td>0.03 (SB)</td>
<td>3147</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>YXAM67RFY</td>
<td>NA</td>
<td>59</td>
<td>5.00</td>
<td>3652</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>YAM647RYF</td>
<td>NA</td>
<td>48</td>
<td>1.00 (WB)</td>
<td>3654</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>YTEP67UAQY</td>
<td>NA</td>
<td>102</td>
<td>1.50 (WB)</td>
<td>4093</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>HT6ATGQYQF</td>
<td>NA</td>
<td>119</td>
<td>3.00</td>
<td>2120</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TT6YQFHQY</td>
<td>NA</td>
<td>46</td>
<td>5.00</td>
<td>2158</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>T6MQYFQVY</td>
<td>NA</td>
<td>225</td>
<td>0.03 (SB)</td>
<td>2846</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>T6M6SWLTY</td>
<td>NA</td>
<td>3</td>
<td>0.03 (SB)</td>
<td>3147</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>YXAM67RFY</td>
<td>NA</td>
<td>59</td>
<td>5.00</td>
<td>3652</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Supporting Table 1 C
Peptide Prediction Affinity/Rank

<table>
<thead>
<tr>
<th>Peptide amino acid sequence</th>
<th>Origin/Uniprot ID/Position</th>
<th>PSCPL matrix</th>
<th>NetMHCpan</th>
<th>Affinity (Kd, nM)</th>
<th>Stability (T1/2, h)</th>
<th>Predicted by PSCPL</th>
<th>Predicted by NetMHCpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIRKITMAM</td>
<td>Ochrobactrum intermedium/NCBI:Q7UCA1/179</td>
<td>29</td>
<td>1.50 (WB)</td>
<td>122</td>
<td>0.20</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KTLKGGWFF</td>
<td>Vibrio cholerae/Q89R54/110</td>
<td>31</td>
<td>0.25 (SB)</td>
<td>134</td>
<td>0.20</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KSTERQTPFF</td>
<td>SARS-CoV-2/Coronavirus/NCBI:POC577/247</td>
<td>7</td>
<td>0.01 (SB)</td>
<td>127</td>
<td>0.30</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>KARAPB25CL</td>
<td>Salmonella typhi/Q93S1J/915</td>
<td>30</td>
<td>0.25 (SB)</td>
<td>302</td>
<td>0.20</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RVFVRNPFF</td>
<td>Hepatitis C virus/Q60Q10/691</td>
<td>75</td>
<td>0.01 (WB)</td>
<td>355</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SREKRKLML</td>
<td>NA</td>
<td>37</td>
<td>50.00</td>
<td>912</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>LNNFEIKIV</td>
<td>NA</td>
<td>60</td>
<td>50.00</td>
<td>1118</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RTFDFPREE</td>
<td>NA</td>
<td>31</td>
<td>32.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RYFVRSDKL</td>
<td>NA</td>
<td>66</td>
<td>32.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RFIFTNNKY</td>
<td>NA</td>
<td>55</td>
<td>0.25 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VTFWGFGLF</td>
<td>NA</td>
<td>23</td>
<td>0.25 (SB)</td>
<td>4911</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RYFWGRQSF</td>
<td>NA</td>
<td>27</td>
<td>2.00 (WB)</td>
<td>2814</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RYTFVRKFL</td>
<td>NA</td>
<td>27</td>
<td>0.80 (SB)</td>
<td>3758</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>YTFRIFDFM</td>
<td>NA</td>
<td>19</td>
<td>0.30 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PROGERAL</td>
<td>NA</td>
<td>82</td>
<td>7.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RLRRRRLFPL</td>
<td>NA</td>
<td>44</td>
<td>4.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RLRREKHPL</td>
<td>NA</td>
<td>31</td>
<td>3.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RTYFAIDTY</td>
<td>NA</td>
<td>38</td>
<td>0.05 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TPRRAKFGY</td>
<td>NA</td>
<td>30</td>
<td>10.00</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>LKDFSGWQF</td>
<td>NA</td>
<td>1</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>HG2RRFQTV</td>
<td>NA</td>
<td>6</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>KGJGTVAY</td>
<td>NA</td>
<td>6</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RTYFVPEY</td>
<td>NA</td>
<td>7</td>
<td>0.03 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>AMGCQTVTY</td>
<td>NA</td>
<td>1</td>
<td>0.05 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FLYDSMGL</td>
<td>NA</td>
<td>0</td>
<td>0.05 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>GHQREGY</td>
<td>NA</td>
<td>7</td>
<td>0.03 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VMFPLTRFY</td>
<td>NA</td>
<td>6</td>
<td>0.03 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NQFVKANLTY</td>
<td>NA</td>
<td>4</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VTFLFQLY</td>
<td>NA</td>
<td>1</td>
<td>0.03 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>AGTAAAAYY</td>
<td>NA</td>
<td>2</td>
<td>0.05 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VSTAAAYY</td>
<td>NA</td>
<td>2</td>
<td>0.05 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VSTAAAYY</td>
<td>NA</td>
<td>2</td>
<td>0.05 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>KTVRSLAY</td>
<td>NA</td>
<td>5</td>
<td>0.03 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RTICLALAY</td>
<td>NA</td>
<td>3</td>
<td>0.03 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PGQDQISLEY</td>
<td>NA</td>
<td>3</td>
<td>0.03 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VTIVAFQNT</td>
<td>NA</td>
<td>3</td>
<td>0.05 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ELIPQGSTY</td>
<td>NA</td>
<td>3</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>HRNAYTVLFT</td>
<td>NA</td>
<td>3</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>GRPSMNLAY</td>
<td>NA</td>
<td>4</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SMNNSLALY</td>
<td>NA</td>
<td>5</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RNPLANTSY</td>
<td>NA</td>
<td>10</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NQTLAPPFY</td>
<td>NA</td>
<td>7</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NRFPSLAVY</td>
<td>NA</td>
<td>6</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PLASTQSY</td>
<td>NA</td>
<td>4</td>
<td>0.03 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ITMVGGLTY</td>
<td>NA</td>
<td>8</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CMAPSTSY</td>
<td>NA</td>
<td>1</td>
<td>0.01 (SB)</td>
<td>20000</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Supporting Table A - C SLA-1, -2, and -3*0401 peptide prediction, affinity and stability analysis as well as successful predictions. Stability analysis (T½) was performed for peptides with a KD of 500 nM or less. Affinity (KD) is given in nano molar (nM). Stability (T½) periods are given in hours (h). NetMHCpan rank thresholds are 0.500 for strong binders (SB) and 2.00 for weak binders (WB). Peptides with NetMHCpan rank values above 2.00 were considered as predicted non-binders. PSCPL matrix scores were calculated as the multiplication of all RB values for each of the nine amino acids in the peptide. A matrix score threshold of >25 was set for peptides considered as PSCPL matrix predicted binders. Peptides with KD affinities of >500 nM are shaded (grey). ND: Not Determined. NA: Not Assigned.
<table>
<thead>
<tr>
<th>MHC molecule / total peptides tested</th>
<th>PSCPL Binding Matrix</th>
<th>Affinity Measures (K_D)</th>
<th>Stability Measures ($T_{1/2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA-1*0401 / 157 peptides</td>
<td>Determined by ELISA (Pedersen et al. 2011)</td>
<td>Determined by ELISA</td>
<td>Determined by SPA</td>
</tr>
<tr>
<td>SLA-2*0401 / 72 peptides</td>
<td>Determined by ELISA (Pedersen et al. 2012)</td>
<td>Determined by LOCI</td>
<td>Determined by SPA</td>
</tr>
<tr>
<td>SLA-3*0401 / 76 peptides</td>
<td>Determined by SPA</td>
<td>Determined by LOCI</td>
<td>Determined by SPA</td>
</tr>
</tbody>
</table>

Supporting Table 2 Methods used to determine the respective SLA heavy chain binding matrices as well as peptide affinities and stabilities. Enzyme-Linked Immunosorbent Assay (ELISA). Scintillation Proximity Assay (SPA). Luminiscent Oxygen Channeling Assay (LOCI).
Induction of foot-and-mouth disease virus-specific cytotoxic T cell killing by vaccination

The work presented in this manuscript addresses the potential induction of FMDV-specific CD8\(^+\) CTLs as a result of vaccination against FMDV. We hypothesize that using a recombinant human adenovirus vector based vaccine, delivering FMDV antigens in a T cell-directed manner, would enhance cytolytic activity and effectively increase pSLA peptide concentration for stimulation of a CTL response. The results confirm the hypothesis and show the induction of FMDV-specific CTLs capable of killing MHC-matched target cells. These data were further confirmed by specific SLA tetramer staining of activated PBMCs.

In this manuscript we present the first demonstration of FMDV-specific CTL killing and confirmation by MHC tetramer staining in response to vaccination against FMDV.
Foot-and-mouth disease (FMD) continues to be a significant threat to the health and economic value of livestock species. This acute infection is caused by the highly contagious FMD virus (FMDV), which infects cloven-hoofed animals, including large and small ruminants and swine. Current vaccine strategies are all directed toward the induction of neutralizing antibody responses. However, the role of cytotoxic T lymphocytes (CTLs) has not received a great deal of attention, in part because of the technical difficulties associated with establishing a reliable assay of cell killing for this highly cytopathic virus. Here, we have used recombinant human adenovirus vectors as a means of delivering FMDV antigens in a cell-directed vaccine in pigs. We tested the hypothesis that impaired processing of the FMDV capsid would enhance cytolytic activity, presumably by targeting all proteins for degradation and effectively increasing the class I major histocompatibility complex (MHC)/FMDV peptide concentration for stimulation of a CTL response. We compared such a T cell-targeting vaccine with the parental vaccine, previously shown to effectively induce a neutralizing antibody response. Our results show induction of FMDV-specific CD8+ CTL killing of MHC-matched target cells in an antigen-specific manner. Further, we confirm these results by MHC tetramer staining. This work presents the first demonstration of FMDV-specific CTL killing and confirmation by MHC tetramer staining in response to vaccination against FMDV.
role in FMDV immunity and often correlates with protection of vaccinated animals against live virus challenge (32). Currently available vaccines consist of killed virus in adjuvant and are effective at providing protection but do not allow for the “differentiation of infected from vaccinated animals” (DIVA) (48). A leading candidate for a next-generation FMDV vaccine is a replication-defective human adenovirus 5 (Ad5) viral vector delivering FMDV capsid precursor (P1) and 3Cmut, an “empty capsid” vaccine. This platform has DIVA capability and is very compatible with diagnostic tests in use at present. The parent polypeptide is processed by the 3Cmut into the protein components of the capsid (reviewed in references 20 and 48). This vaccine strategy is effective in swine (30, 31, 35) and cattle (39). However, like the killed-virus vaccine and natural infection, neutralizing antibodies raised against the vaccine strain do not provide cross-serotype protection. This limits the value of vaccination during an FMDV outbreak or in disease eradication (48), as virus strain matching is required for vaccine efficacy.

CD8+ cytotoxic T lymphocytes (CTLs) play an important role in adaptive immunity and are capable of directly killing virus-infected cells in an antigen-specific manner through the release of perforin and granzymes as well as through Fas-Fas ligand interactions (reviewed in references 5 and 58). Unlike antibodies which recognize complex antigens, CTLs recognize antigens that have been processed and cleaved into 8- to 12-amino-acid peptides by the proteasome and then loaded into MHC class I molecules in the lumen of the endoplasmic reticulum (reviewed in reference 46). These peptide/MHC complexes are then transported to the surface of the infected cell, where they are displayed to T cell surveillance. CTL recognition occurs when an appropriate T cell receptor (TCR), in association with the CD8 molecule, stably binds to the peptide/MHC complex, resulting in stimulatory signaling cascades within the CTL (58). The ability of CTLs to recognize epitopes that remain hidden to neutralizing antibodies makes them attractive candidates for enhancing FMDV immunity.

In contrast to the focus on neutralizing antibodies, the role of CTLs in FMDV immunity has gone largely unexplored. The ability of the virus to inhibit MHC synthesis and transport and the speed with which the virus is cleared presumably result in limited antigen exposure for MHC class I-restricted T cells. In addition to the virus-induced lymphopenia, data from in vitro studies would predict that FMDV-specific CTLs are not elicited by natural FMDV infection if MHC class I expression is blocked in vivo as has been described in vitro (51). This would make FMDV-infected cells invisible to class I-restricted CTLs. Given the cytopathic nature of the virus, this hypothesis has gone largely untested, as FMDV-infected cells are rapidly lysed in vitro and cannot be used as target cells in assays for antigen-specific cell lysis.

We have overcome these limitations with two alternative approaches. First, we employed recombinant Ad5 FMDV vaccine technology as a method for delivering FMDV antigens to both stimulating and target cells for the in vitro CTL killing assay. Here, we describe our development of an assay using swine leukocyte antigen (SLA) homozygous pigs and the MHC-matched PK (15) cells as target cells. Second, in order to maximize the CTL response, we used a vaccine construct containing a mutation in 3Cmut that inhibits its ability to process P1 into mature capsids. This approach tests the hypothesis that one result of reduced processing of the primary polypeptide precursor would be an increase in the pool of FMDV proteins available for loading of FMDV-derived peptides into MHC class I molecules. This is then predicted to enhance stimulation of CTLs specific for FMDV peptides.

Further, to confirm that CTL killing was antigen specific and MHC restricted, we developed class I MHC tetramers using the NetMHCpan prediction algorithm developed for human class I MHC (38) and extended to other species, including swine (reference 25 and this report). Here we report that the T cell-targeting vaccine elicited a greater overall CTL killing response than the parental vaccine and correlated with the induction of FMDV-specific CTLs by MHC tetramer staining.

MATERIALS AND METHODS

Cell lines. Porcine kidney (PK[15]) cells (ATCC CCL-33) and PK(15)-EGF cells (described below) were maintained in minimal essential medium (MEM) (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA) and 3.4 mM l-glutamine, 3 mM dextrose, 1 mM sodium pyruvate, 5% sodium bicarbonate, nonessential and essential amino acids, 2-mercaptoethanol, and antibiotics (MEM-10). Baby hamster kidney (BHK-21) cells (ATCC CCL-10) were maintained in basal medium Eagle (BME) (Invitrogen, Carlsbad, CA) supplemented with 10% FBS, 10% tryptose phosphate broth, 2 mM l-glutamine, and antibiotics (BME-10). Human 293 cells (ATCC CRL-1573) were maintained in MEM supplemented with 10% FBS, 2 mM l-glutamine, and antibiotics. Peripheral blood mononuclear cells (PBMCs) were maintained in Roswell Park Memorial Institute (RPMI)-1640 medium (Invitrogen, Carlsbad, CA) supplemented with 10% FBS, 3.4 mM l-glutamine, 3 mM dextrose, 1 mM sodium pyruvate, 5% sodium bicarbonate, nonessential and essential amino acids, 2-mercaptoethanol, and antibiotics.

Animals. Yucatan 4b.0/4b.0 (24) pigs were obtained from Sinclair Research, Inc., Columbia, MO. Animals were held for at least 1 week before being entered into a study. All animal procedures were reviewed and approved by the Plum Island Institutional Animal Care and Use Committee. Antibodies. A mouse monoclonal antibody (MAb) against porcine CD6, clone MILS, was purchased from AbD Serotec (Raleigh, NC). Mouse MAbs against porcine CD8 (R-phycocerythrin [RPE], clone 7-5-11) and CD4 (fluorescein isothiocyanate [FITC], clone 74-12-4) were purchased from BD Biosciences (San Jose, CA). Monoclonal anti-FMDV–VP1 (clone H6C4,1.3 [45]) and anti-VP2 (VPG) (clone F1412A [57]) were used in combination to probe for Western blotting. In addition, a mixture of rabbit polyclonal antibodies raised against the FMDV VP1, VP2, and VP3 proteins (MabVPIA, MabVP2, and MabVP3) were used for Western blotting (43). Anti-tubulin-α MAb was used for control staining of the Western blot (clone DM1A from Thermo Scientific, Fremont, CA).

Viruses. The production of viruses Ad5A24 (Ad5-FMDV-B), Ad5SV-G (Ad5-FMDV-B) and Ad5-Blue (Ad5-Empty) (35) have been previously described. A mutation in the active site of the 3Cmut gene (21) was subcloned into pAd5-A24, replacing the parental, wild-type 3Cmut, and was termed pAd5A24-3C-mut. Production of this new adenovirus, Ad5A24-3C-mut (Ad5-FMDV-T), was otherwise identical to that of the parental virus. All adenoviruses were grown in 293 cells. FMDV, strain A24 Cruzeiro, was propagated in BHK-21 cells.

Western blotting. IGRS2 cells were seeded in a 96-well microplate at 20,000 cells/well in 50 μl supplemented, phenol red-free MEM and incubated for 24 h at 37°C. Following attachment, cells were infected with adenovirus constructs at a multiplicity of infection (MOI) of 20, or with FMDV A24 at an MOI of 10, and then incubated for 24 h or 5 h, respectively. Whole-cell lysates were prepared, and protein expression was evaluated by separation by SDS-PAGE followed by Western blotting.

Vaccination. Six Yucatan 4b.0/4b.0 pigs were divided into two groups of three pigs each and vaccinated with either Ad5-FMDV-B or Ad5-FMDV-T. PBS was administered to one additional pig as a negative control. For both vaccination and boosting, animals were given a total of 5 × 106 PFU of the appropriate adenovirus. Virus was delivered intradermally in a total of 2 ml to four sites on the neck (0.5 ml/site) using the DERM-A-VAC needle-free system (Merial, Duluth, GA). Pigs were boosted 12 weeks postvaccination and again 11 or 13 months postvaccination.
Isolation of PBMCs. Porcine blood was collected in Vacutainer tubes containing heparin. Typically, 20 ml of blood was diluted with 14 ml of phosphate-buffered saline (PBS), followed by the addition of a 12-ml underlay of Lymphoprep (Axis-Shield, Oslo, Norway), and then centrifuged at 1,000 × g for 20 min at room temperature. The band of peripheral blood mononuclear cells (PBMCs) was harvested and washed three times with PBS, followed by suspension in RPMI.

Stimulator/target cell preparation. PK(15) cells were chosen because they are MHC haplotype 4b.0/4.b0 (23), matching the MHC locus of the Yucatan swine under study. To prepare stimulator cells, PK(15) cells were seeded into 24-well plates and allowed to attach overnight. Cell medium was removed and cells were infected with adenovirus at an MOI of 10 in 0.2 ml of RPMI 1640 (nonsupplemented) for 1 h at 37°C with occasional rocking. For target cells, we developed PK(15)-EGFP cells. pEGFP-C1 (Clontec, Mountain View, CA) was linearized by digestion with PciI (New England BioLabs, Ipswich, MA) and transfected into PK(15) cells using the ProFection mammalian transfection system (Promega, Madison, WI). Stably transfected cells were selected by growth in the presence of Geneticin (500 μg/ml) (Invitrogen, Carlsbad, CA) and cloned by two rounds of limiting dilution. For the assay, 2 × 10⁶ cells were infected with the appropriate virus at an MOI of 10 for 1 h in a low volume of MEM. Target cells were then given MEM-10 and incubated overnight at 37°C.

CD6⁺ purification. PBMCs isolated from vaccinated pigs were suspended at a concentration of 10⁵ cells/ml, and 1 ml was added to each well of infected PK(15) cells (typically 10 to 16 replicate wells), followed by the addition of 1 ml/well of RPMI 1640 (supplemented). Plates were incubated at 37°C for 3 to 5 days. Stimulated PBMCs were recovered from wells and reisolated on Lymphoprep in order to remove dead cells. To positively select CD6⁺ cells, purified PBMCs were labeled with mouse anti-porcine CD6 MAb (1 μg/10⁶ cells) followed by MACS goat anti-mouse IgG microbeads and separated on LS columns using a Miltenyi Biotec (Mölten, Germany), according to the manufacturer's instructions, resulting in approximately 95% CD6⁺ cells (data not shown).

Cytoxic T lymphocyte killing assay. In vitro expanded, CD6⁺-enriched cells were suspended in supplemented RPMI 1640 at a concentration of 10⁵ cells/ml, plated (100 μl/well) in a low-binding 96-well plate (Thermo Fisher Scientific, Waltham, MA), and diluted 2-fold to obtain final effector-to-target-cell (E:T) ratios of 100:1, 50:1, 25:1, 12:1, and 6:1. Trypsinized PK(15)-EGFP target cells were suspended at 10⁴ cells/ml and added to the effector cells (100 μl/well). In order to discriminate dead target cells from live cells, 5 μl of 7-amino-actinomycin D (7-AAD) (BD Biosciences, San Jose, CA) was added to each well. The plate was centrifuged at 233 × g for 1 min and then incubated at 37°C for 4 h. Following incubation, cells were resuspended and data were acquired by a FACSCalibur flow cytometer with a high-throughput sampler (HTS) (BD Biosciences, San Jose, CA). Data were analyzed using CellQuest Pro software (BD Biosciences, San Jose, CA) by gating on PK(15)-EGFP cells and determining the percentage of 7-AAD-positive (hved) cells. Background lysis was determined by 7-AAD staining of target cells in the absence of effectors, and this percentage was subtracted from all groups.

Serum neutralization assay. Endpoint titers of serum neutralization of FMDV A24 were determined according to the procedure described by Pacheco and coworkers (40). Briefly, 4-fold serum dilutions were incubated at 37°C with 100 50% tissue culture infective doses (TCID₅₀) of FMDV serotype A24 for 1 h in a microtiter plate, after which BHK-21 cells were added (10⁴ cells/well). Following incubation for 3 days, wells were scored for cytopathic effect and endpoint titers were calculated, which represent the reciprocal of the dilution of serum able to neutralize 100 TCID₅₀ of virus.

Tetramer construction and staining. Peptides and recombinant SLA-1*0401 and human β₂-microglobulin (β₂m) were produced and complexed into tetramers as described previously (28) with minor modifications. Briefly, recombinant β₂m and peptides were added to 10-fold excesses, respectively, of SLA-1*0401 in a reaction buffer containing a cocktail of protease inhibitors (0.68 mM EDTA, 4.8 μM pepstatin A, 94.4 μM 1-phenanthroline, 0.1 mM N-ethylmaleimide, 8.9 μM tosyl-L-lysine chloromethyl ketone (TLCK), 9.3 μM tosyl-L-phenylalanine chloromethyl ketone (TPCK), 66.8 μM phenylmethylsulfonyl fluoride (PMSF)] followed by the addition of streptavidin-allophycocyanin (SA-APC). For tetramer staining, 2 × 10⁵ to 5 × 10⁵ cells were washed with cold FACS buffer (PBS, 0.5% bovine serum albumin, 0.1% sodium azide) and resuspended in solution containing tetramer previously mixed 1:1 with 2× FACS buffer. Cells were incubated at room temperature with rocking for 20 min and then washed three times in cold FACS buffer. Cells were resuspended in FACS buffer containing fluorescent MAbs against porcine CD8 and CD4 and then incubated at room temperature for 20 min. After being washed three times in

FACS buffer, cells were fixed in PBS containing 1% formaldehyde and stored at 4°C until being analyzed by flow cytometry.

RESULTS

Mutation of FMDV 3C protease results in reduced capsid processing and production of anti-FMDV antibodies. Previous work by Moraes and coworkers demonstrated that vaccination of swine with Ad5A24 (Ad5-FMDV-B) resulted in the generation of a protective anti-FMDV antibody response (35). Mutation of the 3C protease resulting in an amino acid change (C163S) is known to inhibit processing of P1 into mature capsid proteins (21). A second adenovirus construct with the same P1 polyprotein derived from FMDV strain A24 and the mutated 3C protease was made, which we designate Ad5-FMDV-T. This construct was predicted to provide enhanced stimulation of a CTL response based on previous work that demonstrated a lack of antibody response to a similar construct made for FMDV strain A12 (31).

To demonstrate the reduced activity of 3C in this new construct, IBRS2 cells were infected with Ad5-FMDV-B, Ad5-FMDV-T, Ad5-Empty, or FMDV strain A24. Cell lyses were analyzed by SDS-PAGE followed by Western blotting. We detected the presence of P1 cleavage products VP0, VP3, and VP1 in the lyses of cells infected with either FMDV or Ad5-FMDV-B, with little or no P1 precursor (Fig. 1). In contrast, cells infected with Ad5-FMDV-T showed a significant decrease in the presence of VP0, VP3, and VP1, with significantly more unprocessed P1 (Fig. 1), suggesting a reduction of 3C°° activity and consequent accumulation of P1.

Sera from pigs vaccinated and boosted with Ad5-FMDV-B and Ad5-FMDV-T were tested for FMDV neutralizing antibodies as described in Materials and Methods. All three pigs vaccinated with Ad5-FMDV-B generated neutralizing antibodies following priming, with elevated titers following two rounds of boosting (Fig. 2). In contrast, of the three pigs vaccinated with Ad5-FMDV-T, only p945 generated detectable neutralizing antibodies following priming. Both p945 and p947 had serum neutralizing antibodies following boost, with the titer for p947 remaining relatively low. Neutralizing antibodies were

FIG. 1. Reduced capsid processing of Ad5-FMDV-T. IBRS2 cells were infected with the indicated virus as described in Materials and Methods. Following infection, cell lyses were made and proteins were separated by SDS-PAGE and visualized by Western blotting using either MAbs against VP2 (visualized as the VP0 precursor) and VP1 (left) or a mix of rabbit polyclonal antibodies against FMDV capsid proteins (right).
never detected in serum from p925 or from the PBS negative control, p863. These data suggest that Ad5-FMDV-T is less effective than Ad5-FMDV-B at eliciting neutralizing antibodies, presumably due to less efficient processing of P1 by 3Cpro.

Establishment of an FMDV CTL assay. The animals vaccinated with either Ad5-FMDV-T, Ad5-FMDV-B, or PBS were boosted 12 weeks postvaccination and analyzed. PBMCs were collected 24 days postboost and stimulated for 5 days in the presence of PK(15) cells infected with Ad5-FMDV-T and then tested for cytolytic activity against target cells that were either mock infected or infected with Ad5-FMDV-T. Consistent with our hypothesis, we observed the greatest antigen-specific cytolysis by cells derived from pigs vaccinated with Ad5-FMDV-T (Fig. 3). Due to low effector cell numbers, we were unable to evaluate the response against mock-infected cells for p864 and p925, and thus we omitted data from these two animals from Fig. 3.

In spite of the observed elevation of antigen-specific cytolysis, with the exception of p945 we observed poor titration of target cell killing across several effector-to-target-cell (E:T) ratios (data not shown). A similar lack of titration of cytolytic activity by bulk PBMCs was previously observed by Denyer and coworkers, who demonstrated that purification of CD6+ cells by positive selection prior to incubating with target cells resulted in titration of cytolytic activity across E:T ratios (11).

Based on this information, we enriched for CD6+ cells following antigen stimulation in all further experiments, as described in Materials and Methods. PBMCs isolated from pigs vaccinated with Ad5-FMDV-T and enriched for CD6 expression exhibited enhanced cytolysis of Ad5-FMDV-T-infected target cells that titrated across E:T ratios, compared to mock or Ad5-Empty-infected cells (Fig. 4). The level of killing detected by this refined assay was slightly reduced, likely due to the elimination of NK cells from the responding population. The animal vaccinated with PBS showed no specific killing (see Fig. S1 in the supplemental material). In subsequent figures, we show the data for the 50:1 E:T ratio only, with the cytolysis of Ad5-Empty-infected cells subtracted from each group, though all four E:T ratios were always run. Finally, with this new assay, we tested the kinetics of the expansion culture over the course of 5 days and found that the highest level of killing,
with minimum background, was detected on day 3 (data not shown), so all expansion cultures were done for 3 days.

Specificity of CTL cytolytic activity for FMDV P1. The development of this CTL assay was achieved with these vaccinated and boosted animals such that by 9 months following the first boost, antigen-specific cytolysis was difficult to detect, suggesting a waning of CTL immunity. Therefore, all pigs were boosted a second time with the vaccinating virus construct (p864 to p866 with Ad5-FMDV-B and p925, p945, and p947 with Ad5-FMDV-T) and activation of CTL killing was tracked using the assay.

In order to test the ability of the different adenovirus constructs to stimulate CTLs, PBMCs isolated from pigs 4 days after boosting with Ad5-FMDV-B were stimulated with cells infected with either Ad5-FMDV-T or Ad5-FMDV-B. Following CD6^+^ purification, effector cells were assayed for cytolysis of target cells infected with Ad5-FMDV-T (solid bars), Ad5-FMDV-B (open bars), or Ad5-VSV-G (shaded bars) or mock-infected (striped bars) cells. Data are shown relative to Ad5-Empty. The mean and standard deviation of results for triplicate wells are indicated.

The de-

Cells were stained with antibodies specific for CD4 and CD8 and with the tetramers. Analysis by flow cytometry was carried out by gating on the CD4^-/CD8^- cell population and determining the percentage of tetramer-positive (tetramer^+^) cells (see Fig. S2 in the supplemental material). For pigs vaccinated with Ad5-FMDV-B, little tetramer staining was detected from samples taken 4 days following the second boost (Fig. 8) or thereafter (data not shown). This result correlated with low levels of cytolytic activity from the same samples (Fig. 6). In contrast, pigs vaccinated with Ad5-FMDV-T had a 2- to 3-fold
increase, compared to preboost levels, in tetramer staining of the CD8^+ population isolated 4 days following the second boost (Fig. 8). Increased tetramer staining was correlated with peak cytolysis (compare Fig. 6 and Fig. 8) and was no longer detectable by 8 days after the boost. These data show that FMDV peptide MTAHITVPY is presented by SLA-1*0401 molecules in vivo and serve as confirmation of the presence of anti-FMDV, MHC-restricted CTLs.

A number of other peptides from the viral capsid precursor protein, P1, were also shown to bind the SLA-1 MHC class I protein. In addition, more peptides were identified that bind SLA-2 of these Yucatan pigs (SLA-2*040201) (L. E. Pedersen, M. Harndahl, M. Nielsen, J. R. Patch, G. Jungersen, S. Buus, and W. T. Golde, unpublished data). We also prepared tetramers from these combinations and tested them on CD8^+ T cells from the vaccinated pigs in this study. All of these tetramers were negative for staining cells taken 4 days after boost and all other time points tested. Only the SLA-1*0401/MTAHITVPY tetramer stained cells from the Ad5-FMDV-T vaccinated animals.

DISCUSSION

In the present study, we tested the ability of two nonreplicating adenovirus vectors to generate a CTL cytolytic response
in swine to FMDV epitopes. The ability of this vaccine platform to induce the production of neutralizing antibodies to empty FMDV capsids in both swine (30, 31, 35, 43) and cattle (39) is well established. However, its ability to stimulate an antigen-specific CTL response has not been addressed. We hypothesized that the parental adenovirus-based empty capsid vaccine would provide relatively poor stimulation of CTLs because of the efficiency of capsid processing and formation. We reasoned that inhibited processing of FMDV P1 would enhance CTL activation, presumably as a result of enhanced degradation of P1 and subsequent loading of peptides onto class I MHC molecules. Swine were vaccinated with a T cell-directed adenovirus-based vaccine for FMDV (Ad5-FMDV-T), which contained a mutant 3Cpro that processes P1 poorly. The decreased processing of P1 by Ad5-FMDV-T was evident in Western blot analysis, as well as in the titers of virus-neutralizing antibodies in serum.

Whole PBMCs isolated from vaccinated animals demonstrated cytolytic activity against appropriate target cells. However, enriching for CD6+ cells before mixing the effector and target cells improved the analysis of CTL activity. These results are in agreement with those of Denyer and coworkers, who demonstrated improved titration of antigen-specific, MHC-restricted cytolyis by enriching for the CD6+ population of swine T cells (11). The CD6+ cell population has been characterized as consisting of MHC-restricted CTLs and helper T cells, including CD4+/CD8+, CD4+/CD8+, and CD4+/CD8+ populations (8, 11, 41, 42, 49). Thus, an additional advantage of positively selecting for CD6+ cells is the elimination of non-MHC-restricted cytolytic cells such as NK cells and γδ T cells, which do not express CD6 (44).

The MHC restriction of this CTL response was strongly supported by SLA-1 tetramer staining of cells derived from these animals. When peripheral blood cells derived from pigs vaccinated with Ad5-FMDV-T were analyzed, an increase in tetramer+/CD4+/CD8+ cells was detected. The increase in tetramer-positive cells correlated with the peak of cytolytic activity, consistent with MHC-restricted cytolytic activity. We also noted that for pigs vaccinated with Ad5-FMDV-T, the relative tetramer staining of samples taken 4 days after the second boost correlates with the relative level of CTL killing activity. However, given the small number of animals in the group, this correlation is not statistically significant.

The enhanced cytolysis and tetramer staining of cells derived from pigs vaccinated with Ad5-FMDV-T relative to those vaccinated with Ad5-FMDV-B are supportive of our hypothesis that decreased capsid processing enhances CTL activity. However, it is possible that the precursor and mature capsid proteins are cleaved differently by the proteasome, resulting in a lack of MTAlHTVVPY peptides displayed in MHC molecules of the Ad5-FMDV-B-infected cells. This could explain why few tetramer-positive cells were detected in animals vaccinated with Ad5-FMDV-B. At minimum, this peptide from the C-terminal half of the VP2 region of P1 is not near the cleavage site at the

FIG. 8. Tetramer staining of CD4+/CD8+ CTLs. For time points shown in Fig. 6, PBMCs were stained with antibodies against CD4 and CD8 and costained with SLA-1*0401 tetramers bound to either an FMDV (red) or Ebola virus (blue) peptide. Histograms of tetramer-positive CTLs from Ad5-FMDV-B (A)-or Ad5-FMDV-T (B)-vaccinated animals are shown. Numbers indicate percent FMDV tetramer-positive cells from the CD8+, CD4+ gate and were calculated by subtracting the percentage of cells stained with the negative-control tetramer.
junction of VP2 and VP3. Differential tetramer staining cannot, therefore, be attributed to a loss of this peptide due to precursor cleavage by 3Cpro.

Although CTLs play a central role in the adaptive immune response to intracellular antigens, their role in FMDV immunity has received little attention, in part because of the technical difficulties in establishing appropriate assays with which to measure their activity. In addition to the requirement for genetic matching of MHC class I alleles between effector and target cells, the cytopathic nature of FMDV has hampered development of a cytolytic assay. As a consequence, investigators have measured other biological properties of CD8+ cells, such as proliferation (6, 26, 47, 50) or IFN-γ secretion (22), as proxies for CTL killing activity. The present report describes an alternative strategy for directly assessing CTL killing in response to FMDV antigens and relies on recombinant expression of FMDV proteins. In an earlier report, Li and coworkers described vaccination of swine with an attenuated pseudorabies virus containing a gene for the FMDV P1 capsid precursor that was effective at generating CTL killing activity (29). However, these investigators did not address MHC restriction, characterization of the cells responsible for killing, or antigen specificity of the reported CTL activity. In contrast, we now present data describing the first description of using MHC tetramers to identify antigen-specific CTLs in swine in general and the first time that anti-FMDV CTL killing in any livestock species has been correlated with tetramer staining.

Whether CTLs can play a significant role in FMDV protection and vaccination strategies remains to be determined. Previous work in swine found that a complete lack of capsid processing resulted in a failure to generate neutralizing antibodies, and challenged animals developed clinical signs comparable to those of unvaccinated animals (30, 31). However, the dose of vaccine used was more than a log lower than the dose used here. Reports using higher doses of a P1-based vaccine in swine resulted in partial protection in the absence of FMDV-specific antibodies (50). Similar results were obtained in cattle by the same investigators (32).

In vitro, FMDV inhibition of MHC class I surface expression begins in as little as 30 min postinfection (51). Thus, even under ideal conditions where anti-FMDV CTLs are primed and expanded, control of infection by CTLs depends on host cells infected by wild-type virus in vivo processing and displaying FMDV peptides leading to the CTL response before inhibition of new MHC class I protein expression is blocked by viral proteases. Although neutralizing antibodies are likely to remain the principal focus of FMDV vaccination, CTLs may be able to contribute to cross-serotype and subtype immunity because potential T cell epitopes are not limited to the structural proteins, where most of the immune-driven diversity is located (4). Whereas antibody epitopes are large and three dimensional, the T cell epitopes are linear and extremely small (8 to 12 amino acids) and have the potential to be highly conserved over the different serotypes of FMDV. Further work directed toward refining the induction and measuring of the CTL response, as well as evaluating protection from challenge, is needed to determine if induction of CTL immunity can yield protection across serotypes in diverse breeds of pigs and other species of interest, especially cattle.

ACKNOWLEDGMENTS

We thank Mary Kenney and Mital Pandya (Plum Island Animal Disease Center, ARS, USDA) for their support and assistance with these studies. We also thank the staff of the Plum Island Animal Resources Unit (Plum Island Animal Disease Center, DHS) for their professional work with the animals used in these experiments.

This work was funded by CRIS grant no. 1940-32000-052-00D from the Agricultural Research Service, USDA (W.T.G.). In addition, this work was partially cofunded by the Danish Council for Independent Research, Technology and Production Sciences grant no. 274-09-0281 (G.J.). L. E. Pedersen was the recipient of a Plum Island Animal Disease Center Research Participation Program fellowship, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA).

REFERENCES

7. SLA Tetramers

The identification of peptides strongly bound by SLA molecules, and producing stable pSLA complexes, was performed in regard to (i) achieving knowledge about the individual SLA binding profiles, and (ii) producing stable pSLA complex based tetramers for staining of porcine PBMCs.

7.1. FMDV TETRAMER STAINING

pSLA tetramer studies were performed at PIADC as part of this PhD project using FMDV derived peptides, followed by staining of PBMCs isolated from six animals previously vaccinated and boosted against FMDV. These studies resulted in the identification of an FMDV T cell epitope (Figure 13). General results and findings of the overall study are fully discussed in Paper IV, and presents the first demonstration of FMDV-specific CTL killing of infected porcine kidney (PK15) cells with confirmation by SLA allele matched tetramer staining.

My primary focus will be on the tetramer part of the studies presented in Paper IV, in that it constitutes a general section of the overall PhD project. Hence, the killing analysis and results are only briefly discussed.

To date the role of CTLs in FMDV immunity has gone largely unexplored partly due to the role of neutralizing Abs been proven dominating in the establishment of protection against the virus as described above. Furthermore, the ability of the virus to inhibit MHC synthesis and transport to the surface has previously been described in vitro (Sanz-Parra et al. 1998). The inhibited MHC synthesis and transport combined with the virus-induced lymphopenia, predict FMDV-specific CTLs to play a minor role in clearing natural FMDV infection, if the MHC class I expression is as well obstructed in vivo. Further complicating the analysis of specific CTLs and their role during FMDV infection is that FMDV infected cells are rapidly lysed in vitro, and hence cannot be used as targets in assays for antigen-specific cell lysis.

We developed an assay using available strains of pigs homozygous for SLA-1*0401, -2*0401, and -3*0401. Further, the porcine fibroblast cell line, PK15, cells are a genetic match to the SLA class I genes expressed in these pigs and thus are appropriate targets for the in vitro killing
assay. Using the replication defective Ad5 virus vector expressing FMDV P1 protein, we were able to infect PK15 target cells without lysis and thus test CTLs from vaccinated, MHC matched pigs for killing of the infected PK15 cells. A vaccine construct containing a mutation in the protease 3Cpro (Ad5-FMDV-T) enabled us to test a hypothesis that an increase in the intracellular pool of FMDV proteins available for degradation and loading of FMDV-derived peptides into SLA class I molecules would enhance stimulation of FMDV peptide specific CTLs. To confirm that the observed CTL induced killing was antigen specific, and MHC restricted, FMDV pSLA complex based tetramers were produced and used to stain PBMCs isolated from the vaccinated animals at identical time points post vaccine boost as for the PBMCs used to kill infected PK15 targets. A comparison of animals vaccinated using the Ad5-FMDV-T vaccine with animals vaccinated with a 3Cpro intact vaccine (Ad5-FMDV-B) was performed, to verify the hypothesis of enhanced CTL stimulation due to inactive 3Cpro (Figure 13 A versus B, Day 4).

Figure 13. Tetramer staining of CD8+CD4- PBMCs using two tetramers produced with either an FMDV (red) or Ebola (blue) virus-derived peptide. Histograms of tetramer stained CD8+CD4- PBMCs from Ad5-FMDV-B (A) or Ad5-FMDV-T (B) –vaccinated animals are shown. Numbers indicate the individual percentage FMDV tetramer positive cells within the CD8+CD4- population of PBMCs after subtracting the percentage of cells stained with the negative-control Ebola-tetramer. The figure shows responses for three Ad5-FMDV-B vaccinated pigs (p864, 865, 866) and three Ad5-FMDV-T vaccinated pigs (p925, 945, 947). The figure is taken from Paper IV of this thesis.
As illustrated in Figure 13, animals vaccinated with the Ad5-FMDV-T construct stained clearly positive with tetramer at day 4 post vaccine boost (Figure 13B), whereas the Ad5-FMDV-B vaccinated animals showed no staining for samples taken at the same time point (Figure 13A). Similar staining was seen for the Ad5-FMDV-B vaccinated group of animals pre-boost and on day 8 (not shown). These data confirm the hypothesis stated above and classifies the Ad5-FMDV-T construct as a CTL inducing vaccination approach against FMDV, and identify the FMDV derived peptide of the positive tetramer (MTAHITVPY) as a CTL epitope capable of being recognized by a significant number of activated CTLs within the CD8⁺CD4⁻ population (ranging from 5.63 – 20.42 % between different animals). An increase in tetramer staining in the scale of 2- to 3-fold was seen for Ad5-FMDV-T vaccinated animals on day 4 post boost as compared to pre-boost levels (Figure 13B) and correlated with peak cytolysis of adenovirus infected PK15 target cells observed at day 4 post boost (Figure 6, Paper IV). In a previous study performed in cattle, it was found that bovine leukocyte antigen (BoLA) class II tetramers (DRB3*1201-P16-7) positively stained between 10 and 15.5 % of bovine CD4⁺ T cells derived from cattle previously immunized once (Norimine et al. 2006). Instead of boosting their animals with antigen, Norimine et al. used in vitro stimulation of positively selected CD4⁺ lymphocytes for one week with peptide P16-7 to achieve proliferation of the peptide specific cell population. We observed a decrease in cytolysis and absence of positive tetramer staining at day 8 post boost (Figure 13B and Paper IV, Figure 6), which might be an indication of the dose and duration of the Ad5 antigen expression not being efficient enough to create a durable response for longer periods without further boosting. A certain level of pre-boost staining was observed for p945 and p947 (Figure 13B) which was likely due to previous vaccination of the animals followed by a primary boost 12 weeks post vaccination. The tetramer staining presented in Figure 13 was performed following a second boost at 11 (FMDV-T) and 13 (FMDV-B) months post vaccination. Altogether these data serve as confirmation of the presence of anti-FMDV, SLA-restricted CTLs and illustrate the ability of the methods, developed in this project to fit the porcine model, in the identification of CTL epitopes and monitoring of immune responses induced by vaccination.
Approaching the end of the PhD project, having established in-house SLA molecules with several identified high affinity peptide binders derived from Influenza along with the tools available to specifically monitor activated porcine CTLs, I got the opportunity to get fresh blood samples from 20 animals which were part of another project. These animals had been immunized five times against swine influenza A with three week intervals. Unfortunately, once I got knowledge about their existence they had just received their fifth and final immunization and faced elimination. Hence I only had one chance to try and identify any influenza epitopes. The animals had received chemically \((C_3H_4O_2)\) inactivated TCID50/ml doses between \(2.32 \times 10^5\) and \(2.32 \times 10^7\) of various swine influenza A strains divided into different groups of pigs and delivered intramuscularly in the ratio of 1:1 in *Freunds Incomplete* adjuvant (Table 2). Blood samples were collected from all 20 pigs and each of them was SLA allele typed using the PCR-SSP typing method and custom SLA class I designed high resolution primers. Of the 20 animals typed, 16 turned out to express the allele of interest (SLA-1*0401) for which we had previously identified four influenza peptides, CTELKLSDY, GTEKLTITY, SSSFSFGGF, and YVFVGSRY, bound with high affinities. These influenza peptides were predicted to be bound by *NetMHCpan* in conjunction with the SLA-1*0401* binding matrix criteria, and identified as strongly bound peptides by in vitro analysis in the same way as described for the FMDV derived peptides presented in Paper II.

Table 2. Comparison of influenza peptide sequences within the different strains used for immunizations. Only animals with cells found to positively stain with tetramer are shown (pigs 1, 2, 4, 6, 8 and 16) along with pig 17 which represents the 10 non-responding animals. (+) Peptide sequence present in the viral strain used for immunization. (*) Position relative to start codon in virus A/swine/Denmark/101310-1/2011 (H1N1pdm09). (†) Reassortant swine influenza virus encoding a different N2 gene (Breum 2012). (‡) Reassortant influenza virus strain.
PBMCs isolated from the 16 animals positive for SLA-1*0401 were initially frozen and later analyzed by influenza pSLA-1*0401 complex based tetramer staining using four different influenza peptides and two different fluorochrome tetramer labels (allophycocyanin (APC) and brilliant violet (BV421)), which enable the identification of tetramer double positive cell populations as illustrated in Figure 14A (Pig 4, (GTEKLTITY)). A negative control peptide (ASYGAGAGY) was included for comparison. The experimental setup for these immunizations was designed for other purposes than tetramer staining, which left us with no non-vaccinated or SLA mismatched pigs as negative controls. Hence, I decided to use a human PBMC sample stained with tetramers as an additional negative control. Such a control has to be included with caution in that it is not a definite negative control. Still, it is capable of proving that the tetramers we use are not just staining whatever cells they are offered regardless of their species of origin.

Of the 16 correctly SLA matched animals it was found that six pigs (Pig 1, 2, 4, 6, 8, and 16) displayed positive signals above background for one or more of the influenza tetramers in the staining assay (Table 3). A study examining influenza virus specific CD8\(^+\) T cell responses in Macaques has recently been performed using macaque MHC class I, Mane-A1*08401, tetramers produced with an influenza epitope; RA9 (Jegaskanda et al. 2012). In this study animals were infected intranasal and intratracheal at day 0 and day 28, followed by administration of a third infection dose 2 to 10 months later using recombinant influenza virus. PBMCs were collected from blood and frozen. The results of these experiments showed distinct staining of thawed RA9-specific CD8\(^+\) T cells by 0.14 % of the CD8\(^+\) T cell population compared to 0.02 % negative control staining of an influenza naïve Mane-A1*08401-RA9 negative animal, corresponding to a 7-fold increase in tetramer staining signal between positive and negative samples.

From our studies, tetramer cell staining examples of double positively stained (SLA matched, responding animal 4), no staining (SLA matched, non-responding animal 17) and additional negative control staining of human PBMCs with SLA tetramers (SLA mismatched, non-
responding human) are shown in Figure 14 for one swine influenza A peptide (GTEKLTITY) and the negative control peptide (ASYGAGAGY). Here illustrating a 5.4-fold increase in tetramer staining signal between positive and negative samples (Figure 14A). A 32.5-fold increase in positive tetramer staining was seen for PBMCs derived from pig 4 and stained with the influenza tetramer (GTEKLTITY) compared with the same tetramer staining of completely mismatched human PBMCs (Figure 14A + C). Comparing the influenza-tetramer data for the six pigs with those of the macaque study performed by Jegaskanda et al., it is demonstrated that our positive tetramer staining percentages are generally 11 to 46-folds higher, but with similar ratios to the negative control samples, and with some variation between different animals and peptides. These tetramer staining percentages are generally higher than previously observed for fresh ex vivo staining of CD8⁺ PBMCs responding to vaccination against (or infection with) yellow fever (Co et al. 2009) in humans, M. tuberculosis (Wei et al. 2009) in macaque monkeys, and hepatitis C (He et al. 1999) in humans, and could be due to a higher degree of auto-fluorescent cells when studying porcine PBMCs or as a result of a higher level of non-specific, false positive tetramer background staining using SLA tetramers. Most of the responses reported in humans and macaques were shown to increase in tetramer positive percentage scores once stimulated with antigen, hereby reaching numbers around (or above) what is reported here for staining of porcine PBMCs.
Figure 14. Tetramer staining of PBMCs. (A + B): PBMCs from animals previously vaccinated and boosted against swine influenza A. (C): Human PBMCs. Individual samples were stained by a negative control peptide (ASYGAGAGY) tetramer and a swine influenza A derived peptide (GTEKLTITY) tetramer. Singlet PBMCs were gated in P1 (blue), CD8\(^{\text{high}}\)CD4\(^{-}\) cells were gated in P2 (orange), and CD8\(^{\text{high}}\)CD4\(^{\text{APC^BV+}}\) double tetramer positive cells were gated in P3 (green) for Pig 4 and Pig 17 (A + B). For the human control samples, singlet PBMCs were gated in P1 (blue), CD8\(^{\text{high}}\) cells were gated in P2 (orange) and CD8\(^{\text{high}}\)BV\(^{\text{+}}\) tetramer single positive cells were gated in P3 (green) (C). Percentages of tetramer positive cells within the CD8\(^{\text{high}}\)CD4\(^{-}\) population are shown for each sample in the figure. Individual staining percentages for all animals and tetramers are given in Table 3.
The influenza tetramer studies presented here revealed four influenza derived peptide epitopes (CTELKLS DY, GTEKLTITY, SSSFSFGGF, YVFVGTSRY) which were recognized in complex with the SLA-1*0401 molecule by porcine CTLs activated by immunization against swine influenza as illustrated in Figure 15 for Pig 4. Not all animals were responsive towards every influenza tetramer as positive staining was only seen for one of the four tetramers for pigs 1 and 2 (Table 3) using a threshold of 1% positive staining of the CD8hi+ PBMC population post negative background subtraction, which corresponds to a 2-fold higher staining percentage than measured for the negative control tetramer stained cells. Such a 2-fold higher threshold has previously been set by others (Ferrari et al. 2004). Furthermore, it was found that 10 of the 16 animals did not stain positive with any of the tetramers, as illustrated by Pig 17 (Figure 14B + 15, and Table 3), despite being correctly SLA matched. Such non-responsiveness illustrates how SLA bound peptides are not necessarily recognized as epitopes in all animals. Similar observations have previously been made for HLA tetramers and yellow fever peptides as well (Stryhn 2012). Collectively, the differences in individual peptide responses of animals with identical SLA alleles indicate that the SLA-1*0401 tetramers were not just staining any activated CTL derived from a correctly matched animal, but only CTLs with the right specificity, and that although peptide binding to the SLA molecule may be predicted and verified in advance, this is no guarantee for development of a CTL specific immune response to this particular peptide.
An interesting observation was made for Pigs 6, 8 and 16 which had all received viral immunization strains that differ in the NP and HA protein regions coding for two of the peptide sequences used to produce the tetramers (Table 2). The peptide CTELKLS DY had a single substitution in P5 of the peptide (K48Q) compared to the viral strains used for immunization of animals 6, 8 and 16, whereas peptide YVFVGT SRY had up to four substitutions (F217S, G219E, T220S, R222K) for peptide residues P3, P5, P6, and P8. Still, positive tetramer staining of CTLs was seen for all three pigs using these peptides. Such observations could be explained by CTL cross-reactivity suggesting that CTL clones can recognize different peptides, some even sharing no obvious sequence identity (Frankild et al. 2008). In addition to this, looking at the nature of the AAs involved in the substitutions could explain why the CTELKLSDY based tetramers were recognized by the porcine CTLs in that lysine (K) features a basic, positively charged -NH$_3^+$ side chain and glutamine (Q) features a neutral amide -CONH$_2$ side chain, making both AAs hydrophilic and capable of protrude toward the solvent. From a peptide:SLA-1*0401 affinity
point of view it is also seen that both K and Q are bound with almost similar RB values of 0.4 and 0.5, respectively (Paper I, Table 1). For the tetramers produced with the YVFVGTTSRY peptide, the positive staining could be reasoned by similarities between the different AA residues responsible for the substitutions and the respective AA residues within the peptides derived from the viral strains. According to the SLA-1*0401 binding matrix it can be seen that no major differences exist between the different AA substitutions when it comes to binding affinity RB values, slightly favoring the viral strain derived peptide sequences (YVSVESSKY, YVSVVSSKY, YVSVGSSKY) for binding compared to the tetramer peptide sequence (Paper I, Table 1). Both phenylalanine (F) and serine (S) are being hidden within the D-pocket of the SLA-1*0401 peptide binding groove responsible for binding residue P3, with neither of them being disfavored for binding according to the binding matrix (Paper I, Table 1). Hence, despite their overall structural diversity, it could be speculated that such substitution plays a minor role in the matter of tetramer staining, in that these residues are not available for recognition by the TCR. Furthermore, the only difference seen between threonine (T) and serine in P6 is the methyl group of threonine, seeing both AAs as nucleophilic and hydrophilic which makes them more or less alike in terms of interacting with the surroundings. For residue P8 the AAs arginine (R) and lysine (K) share common features in being positively charged, basic and hydrophilic enabling almost similar recognition, whereas the AAs in P5 truly differ in glycine (G) being small and hydrophobic and glutamic acid (E) is acidic and hence hydrophilic. Comparing the other P5 substitution of (G219V) it is noteworthy that both AAs are hydrophobic, with valine (V) being somewhat larger in the presentation of a dimethyl group to the solvent. These P5 AA residues point away from the groove of the MHC enabling them to interact with the TCR of specific CTLs. When that is said, glycine being the smallest existing AA available might enable TCR recognition of the YVFVGTTSRY-based tetramers, in that it is likely that the glycine P5 residue does not play a significant role in this particular TCR:pSLA interaction, or at least is unlikely to interfere with such. Nevertheless, further experiments including further negative controls such as non-vaccinated and SLA mismatched animals, as well as pre-vaccination and pre-boost samples for comparison, would be needed for conclusively confirmation of the specific influenza tetramer staining data presented in this section.
Table 3. Specific staining of porcine CD8^{high}CD4^{-} PBMCs using four different influenza peptide-based tetramers. Percentages in bold illustrate positive tetramer staining based on a threshold of 1.0 % post background subtraction. Italic numbers illustrate no specific binding whereas grey highlights point out positive staining with peptides that are not 100 % identical in sequence with those of the respective vaccine constructs used. ASYGAGAGY is a designed negative control peptide for defining the relative false-positive background signal. Animal ID 17 was included as an example of a non-responding animal. ID Human: Human PBMCs included as an additional negative control for comparison.

<table>
<thead>
<tr>
<th>Pig #</th>
<th>Tetramer influenza peptide</th>
<th>Peptide present in immunization strain used</th>
<th>% Tetramer+ cells within the CD8+CD4- population (background subtracted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASYGAGAGY</td>
<td>No</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td>CTEKLSDY</td>
<td>Yes</td>
<td>1,70</td>
</tr>
<tr>
<td></td>
<td>GTERKLIETY</td>
<td>Yes</td>
<td>1,90</td>
</tr>
<tr>
<td></td>
<td>SSSFSFGGF</td>
<td>Yes</td>
<td>1,70</td>
</tr>
<tr>
<td></td>
<td>YVFVGT3RSY</td>
<td>Yes</td>
<td>1,60</td>
</tr>
<tr>
<td>2</td>
<td>ASYGAGAGY</td>
<td>No</td>
<td>0,60</td>
</tr>
<tr>
<td></td>
<td>CTEKLSDY</td>
<td>Yes</td>
<td>1,70</td>
</tr>
<tr>
<td></td>
<td>GTERKLIETY</td>
<td>Yes</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>SSSFSFGGF</td>
<td>Yes</td>
<td>1,40</td>
</tr>
<tr>
<td></td>
<td>YVFVGT3RSY</td>
<td>Yes</td>
<td>1,50</td>
</tr>
<tr>
<td>4</td>
<td>ASYGAGAGY</td>
<td>No</td>
<td>1,20</td>
</tr>
<tr>
<td></td>
<td>CTEKLSDY</td>
<td>Yes</td>
<td>6,30</td>
</tr>
<tr>
<td></td>
<td>GTERKLIETY</td>
<td>Yes</td>
<td>6,50</td>
</tr>
<tr>
<td></td>
<td>SSSFSFGGF</td>
<td>Yes</td>
<td>3,90</td>
</tr>
<tr>
<td></td>
<td>YVFVGT3RSY</td>
<td>Yes</td>
<td>5,80</td>
</tr>
<tr>
<td>6</td>
<td>ASYGAGAGY</td>
<td>No</td>
<td>2,60</td>
</tr>
<tr>
<td></td>
<td>CTEKLSDY</td>
<td>No</td>
<td>5,80</td>
</tr>
<tr>
<td></td>
<td>GTERKLIETY</td>
<td>Yes</td>
<td>5,80</td>
</tr>
<tr>
<td></td>
<td>SSSFSFGGF</td>
<td>Yes</td>
<td>4,90</td>
</tr>
<tr>
<td></td>
<td>YVFVGT3RSY</td>
<td>No</td>
<td>5,90</td>
</tr>
<tr>
<td>8</td>
<td>ASYGAGAGY</td>
<td>No</td>
<td>0,90</td>
</tr>
<tr>
<td></td>
<td>CTEKLSDY</td>
<td>No</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>GTERKLIETY</td>
<td>Yes</td>
<td>2,40</td>
</tr>
<tr>
<td></td>
<td>SSSFSFGGF</td>
<td>Yes</td>
<td>1,90</td>
</tr>
<tr>
<td></td>
<td>YVFVGT3RSY</td>
<td>No</td>
<td>2,70</td>
</tr>
<tr>
<td>16</td>
<td>ASYGAGAGY</td>
<td>No</td>
<td>1,10</td>
</tr>
<tr>
<td></td>
<td>CTEKLSDY</td>
<td>No</td>
<td>2,80</td>
</tr>
<tr>
<td></td>
<td>GTERKLIETY</td>
<td>Yes</td>
<td>2,50</td>
</tr>
<tr>
<td></td>
<td>SSSFSFGGF</td>
<td>Yes</td>
<td>2,30</td>
</tr>
<tr>
<td></td>
<td>YVFVGT3RSY</td>
<td>No</td>
<td>2,70</td>
</tr>
<tr>
<td>17</td>
<td>ASYGAGAGY</td>
<td>No</td>
<td>0,30</td>
</tr>
<tr>
<td></td>
<td>CTEKLSDY</td>
<td>Yes</td>
<td>0,70</td>
</tr>
<tr>
<td></td>
<td>GTERKLIETY</td>
<td>Yes</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>SSSFSFGGF</td>
<td>Yes</td>
<td>0,60</td>
</tr>
<tr>
<td></td>
<td>YVFVGT3RSY</td>
<td>No</td>
<td>0,70</td>
</tr>
<tr>
<td>Human</td>
<td>ASYGAGAGY</td>
<td>-</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>CTEKLSDY</td>
<td>-</td>
<td>0,30</td>
</tr>
<tr>
<td></td>
<td>GTERKLIETY</td>
<td>-</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>SSSFSFGGF</td>
<td>-</td>
<td>0,30</td>
</tr>
<tr>
<td></td>
<td>YVFVGT3RSY</td>
<td>-</td>
<td>0,30</td>
</tr>
</tbody>
</table>

8. Conclusions and Perspectives

Throughout this PhD project, the fully developed large-scale technology to produce, analyze, and validate peptide–MHC interactions, which was pioneered over three decades for mice and humans (Ferre et al. 2003, Harndahl et al. 2009, Ostergaard et al. 2001, Pedersen et al. 1995,
Stryhn et al. 1996), has been applied to analysis of porcine MHC molecules. By doing so, instigation of knowledge on potential T cell epitopes in this particular species, has been made possible further allowing *in silico* prediction servers, that identify specific peptides for MHC binding, such as the *NetMHCpan*, also to successfully include swine (Hoof et al. 2009, Larsen et al. 2005, Lundegaard et al. 2011, Nielsen et al. 2007, Pedersen et al. 2011, Pedersen et al. 2012a). Combined with the tetramer technology described in this thesis for specific T cell analysis this has enabled fast, accurate “one-pot, mix-and-read” analyses of MHC restricted CD8⁺ T cell reactivity following vaccination. In pigs, *in silico* prediction of virus derived peptides bound by SLA class I molecules has been verified by *in vitro* analysis of specific peptide binding, leading to the identification of strongly bound viral peptides (Pedersen et al. 2011, Pedersen et al. 2012a). In addition, the analysis of pSLA stability was included hereby identifying peptides, which were not only bound with high affinity but further produce pSLA complexes of high stability (Pedersen et al. 2012b). Furthermore, the effects of T cell specific vaccination have been investigated by monitoring CD8⁺ T cell responses post vaccination (Patch et al. 2011). Such reverse immunology proposals should be expected to become important in the contribution to, as well as support of, the study of livestock immune responses.

As part of the project, SLA molecules have been produced and their peptide-binding profiles analyzed. All SLA alleles were initially identified by PCR-SSP allele specific tissue typing (or previously reported in the literature) to be commonly expressed among swine herds. Following these approaches, I predicted and identified several peptides which were bound with high affinity and generate highly stable pSLA complexes with one or more of the newly produced SLA proteins. This was done by using the *NetMHCpan* prediction tool in concert with individual SLA peptide binding matrix predictions, and followed by *in vitro* peptide affinity and stability measures (Hoof et al. 2009, Pedersen et al. 2011, Pedersen et al. 2012b, Pedersen et al. 2012a). Having identified such possible peptide epitopes led to SLA based tetramer staining experiments in an attempt to positively stain PBMCs from animals previously vaccinated against either FMDV (Patch et al. 2011) or swine influenza A. These experiments ultimately led to the identification of T cell epitopes as presented in this thesis (Figure 13 and 15).

Altogether, the assays and experimental approaches presented and discussed here provide new tools to (i) identify commonly expressed SLA class I alleles within herds, (ii) analyze the diverse
peptide binding profiles of individual SLA proteins, and (iii) identify antigenic peptide ligands bound with high affinity and stability by such MHC molecules of interest. These results lead to the production of pSLA tetramers, which, when combined with cytokine release and staining assays, as well as measuring target cell killing, are capable of (i) providing a tool for the enumeration and determination of the relative frequencies of epitope-specific, cytokine-secreting CTLs in a sample, (ii) evaluating the effector function of such CTLs, i.e. their ability to specifically kill infected targets and the identification of specific cytokines and chemokines produced, and (iii) identifying viral as well as tumor derived peptide T cell epitopes (Patch et al. 2011, Romero et al. 1998, Romero et al. 2004).

Some future perspectives and suggested ideas for new projects based on the assays, approaches and results presented in this thesis are illuminated in the sub sections 8.1. – 8.3.

8.1. SIMULTANEOUS ANALYSIS OF MULTIPLE SPECIFICITIES
An interesting approach for future studies would be the establishment of assays capable of simultaneously analyzing porcine CTLs with different specificities based on differently labeled pMHC complex multimers such as the systemically organized dextramers. Dextramers are fluorescently labeled MHC class I oligomers based on dextran backbones, which are capable of binding ten times more biotinylated pMHC complexes, and the conjugation of four to five times more fluorescein than the conventional tetramers (Batard et al. 2006). They have been shown to produce similar or stronger signal than their tetramer counterparts partly due to stronger pMHC:TCR avidity, and particularly because of the higher level of fluorescent labeling. Hence, in contrast to tetramers, MHC dextramers are not restricted to only the brightest fluorochromes for optimal detection. Such features make dextramers interesting alternatives in the identification and labeling of minor populations of antigen specific CTLs using higher order multicolor flow cytometry, and enabling the use of a broad range of fluorochrome conjugates including the ones that are less fluorescent (Batard et al. 2006). Using multicolor staining with either dextramers or tetramers would further improve the cell staining assays and approaches described in this thesis. Such multicolor staining could enable simultaneous identification and enumeration of separate cell populations specific for individual pMHC complexes even after
surface-marker gating. This could be done using two different pMHC multimers each with their own fluorochrome conjugate. In such ways, single (and dual) specificities of activated CTLs can be demonstrated and the cell staining assay itself validated. The scenario of having dual specificities expressed simultaneously by a single population of CTLs would be expected to require almost identical pMHC complex based tetramers or cross-reactive CTLs. Applying such pSLA tetramer or dextramer based multicolor staining assays to swine prove promising for future studies of livestock diseases, and could turn out to become valuable tools, eventually leading to advanced and high specific validation of the functions of existing vaccines, as well as accelerated development of future vaccines.

8.2. SYNTHETIC IMMUNOGENIC PROTEIN (SIP) VACCINES

By use of the different assays and techniques presented throughout this thesis, it should be possible to deliver a new and innovative approach for tailoring synthetic protein vaccines to specifically induce an efficient CTL immune response against some of the most important infectious diseases currently known to threat the swine production worldwide. Evaluation of the different approaches to induce CTL responses with currently available adjuvants would be facilitated by tetramer assessment of different vaccine formulations. An approach described for, and tested in, mice more than a decade ago (Suhrbier 1997, Thomson et al. 1998) and later followed up in regard to enhanced CTL responses using supporting adjuvant (Li et al. 2005), make it reasonable to suggest novel vaccines can be designed of a synthetic string of conserved sub-dominant, well-defined SLA class I CTL epitopes of viruses such as FMDV, PRRSV and swine influenza A virus. Furthermore, it could be suggested that such a vaccine delivered either in a CD8 activating adjuvant or in a live non-replicating vector, would be able to induce an efficient and sustained CTL response against current viral strains as well as forthcoming virus mutations. As described above, the recently developed SLA tetramers could be used to identify important peptide epitopes (such as those highly conserved among viral strains) capable of activating CTLs, followed by transformation of such identified peptides into a designed string of tandem repeated peptides in a synthetic immunogenic protein (SIP) encoded by a carefully designed DNA construct. Once the SIP is delivered, degraded and finally presented as peptides by antigen presenting cells, the porcine adaptive immune system of vaccinated animals should become
activated in a highly specific manner leading to generation of immunologic memory and CTL-mediated protection against the virus represented by the SIP (Figure 16). Such SIP vaccines could turn out to be a novelty with the potential to revolutionize current protein and subunit-based vaccine approaches and development.

Investigation of the induction of CTL responses following live non-replicating adenovirus vaccine vectored SIP (Ad-SIP) vaccination, or vaccination with the SIP formulated into different adjuvants would be highly relevant in the search for optimal adjuvant-based co-delivery and immune activation. Such novel adjuvants, with the potential to induce CTL responses, could arise from modifications of the cationic adjuvant system (CAF) adjuvant family (Nordly et al. 2011), immune stimulatory complexes (ISCOMs) (Schiott et al. 2011), Cholera toxin (Olvera-Gomez et al. 2012) or other new formulations (Heegaard et al. 2011). Succeeding in designing
functionally SIP vaccines would tremendously accelerate vaccine development against viral infections which require a high quality host CTL response for elimination and establishment of protection.

A potential drawback of the SIP based vaccination approach would be the challenge of getting whole SIPS successfully delivered into the cytoplasm of antigen presenting cells, which make protein-adjuvant vaccination a substantial task to deal with. This may be overcome by using the Ad-SIP construct for the synthesis and delivery of SIPS inside the cells. Still, if the use of adenovirus vectors is to be avoided, another solution could be adding “opsonization tags” in the construct encoding the SIP, leading to specific glycosylation of the SIP, for example with mannose, making it recognizable by mannose-binding lectins at the surface of antigen presenting cells.

Most pork producers are likely to select breeding stock for quality and quantity of meat. Hence, vaccine makers will have to customize vaccines to the strains of pigs favored by the producers. If vaccines based on the most frequent SLA alleles are successful, however, it is likely that they will also introduce selection towards an undesired reduction in SLA diversity. Thus, it will be important to include a broad range of SLA specificities in the design of corresponding vaccine polyepitopes.

8.3. MULTIMER BASED CANCER TREATMENT

Using swine as an animal model, it would be possible to validate the effects of human cancer vaccines, by monitoring the specificity and status of activation of different cell populations via pSLA multimers based on peptides derived from the cancer type of interest. Furthermore, pMHC multimers could potentially be used in vivo to label tumor cells for elimination by already existing CTLs of the host specific to common viruses such as Epstein-Barr virus (EBV), Cytomegalovirus (CMV), and influenza, from which the tetramer peptides should be derived. Hereby tetramers would resemble antigen presenting cells bound to the cell surface of tumor cells by an anti-tumor specific mAb directly coupled to streptavidin of the tetramer (Figure 17), enabling the activation of host CTLs and leading to elimination of the tumor cell.
Figure 17. Redirected killing of a tumor cell by an EBV specific CTL. EBV peptides (red) are presented by a pMHC tetramer (green/purple), which is attached to the cell surface of a tumor cell (black) via an anti-tumor mAb (pink) that recognize tumor antigens (grey).

In vitro studies have shown such Ab-pMHC tetramers to sensitize tumor cells to lysis by specific CTLs (Ogg et al. 2000, Robert et al. 2000) making further refinement and development of this technique for in vivo utilization an interesting approach for future immunological therapy of cancer.

8.4. ANSWERS LEAD TO QUESTIONS
The approaches, assays and proposals presented in this PhD thesis could ultimately lead to a better agriculture in terms of a more productive farming industry and overall greater animal health. Still the questions are many, and the greatly accelerated evolution in the field of immunology within the past two decades, has now made curiosity-driven research possible at a scale not previously imaginable. It is often so in science that most answers tend to bring several new questions. Hence, knowing what we do today forces us to strive for more. Could the distribution of SLA molecules, such as the commonly expressed SLA-1*0401, be of any interest in the susceptibility to, or protection against, certain viruses in swine? Would one commonly
occurring class I molecule cover for most of the pSLA complex mediated CTL immune response, or would a symphony of several more or less common alleles be a criteria for the induction of strong and durable adaptive immune protection? How important are the individual peptide anchor requirements and peptide lengths for SLA class I ligand binding, and the corresponding level of immunogenicity, and how does pSLA complex stability affect TCR activation? Would high peptide turn-overs and a great variety in peptide presentation be beneficial to effective protection against disease, or would a low number of a few highly stable pSLA complexes be more capable of sufficiently activating CTLs? Would it be possible to specifically monitor immune responses in outbred populations, leading to the identification of several conserved peptide epitopes from viruses that are constantly mutating to achieve immune evasion? Could such epitopes turn out to be potentially valuable vaccine candidates in the design and development of highly specific subunit vaccines, and how should such a vaccine be delivered for optimal effect? Would it be possible to effectively validate different vaccines and vaccine delivery approaches for humans, using the pig as an experimental model, hereby improving our understanding of targeting various cancers as well as of the pathogenesis and immune elimination of disease in both humans and livestock animals?

Final Thoughts

To get a full – or at least better – understanding on what is going on in our field of veterinary immunology, we need to step back and take yet another look, share and use the technologies and approaches available to us in research laboratories around the globe; discard a lot, re-think some, use a few, and finally have the courage to go down different alleys embracing whatever complexities that we might find.

Breum S.Ø. Novel Influenza A viral strains and sequence analysis. 20-9-2012.
Ref Type: Personal Communication

Brown I.H., Ludwig S., Olsen C.W., Hannoun C., Scholtissek C., Hinshaw V.S., Harris P.A., McCauley J.W.,
Strong I. & Alexander D.J. (1997) Antigenic and genetic analyses of H1N1 influenza A viruses from

proliferation, and diversity of responding CTL. *J. Immunol.* 160, 4441-4448.

divergence of influenza A NS1 gene in pandemic 2009 H1N1 isolates with respect to H1N1 and H3N2

swine major histocompatibility complex region containing all non-classical class I genes. *Tissue Antigens*
57, 55-65.

Choi E.M., Palmowski M., Chen J. & Cerundolo V. (2002) The use of chimeric A2K(b) tetramers to

fever virus 17D immunization. *Immunology* 128, e718-e727.

Cobbold M., Khan N., Pourgheysari B., Tauro S., McDonald D., Osman H., Assenmacher M., Billingham L.,
Steward C., Crawley C., Olavarria E., Goldman J., Chakraverty R., Mahendra P., Craddock C. & Moss P.A.
(2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection

402.

Stryhn A. Yellow fever peptides identified to be epitopes in some donors but not others, despite sharing a certain HLA allele susceptible for peptide binding. Only very few epitopes are dominant in all donors.
27-11-2012.
Ref Type: Personal Communication

