Spatial models for the distribution of Culicoides on a local scale

Kirkeby, Carsten Thure; Bødker, Rene; Stockmarr, Anders; Lind, Peter

Publication date:
2011

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spatial models for the distribution of *Culicoides* on a local scale

René Bødker
Anders Stockmarr
Peter Lind
Introduction

Bluetongue virus in Northern Europe

• Infects ruminants

• Vector-borne

 Culicoides obsoletus group

 Culicoides pulicaris group
Objectives

• Model vector dispersal → spread of virus

• First step: Where are the vectors?

 → (Spatial) factors for vector density?

• Spatial prediction model

• Density measure: Light trap
Study design

- 50 light traps – 50 m grid
- Dist. to Breeding sites
- Temperature
- Wind speed
Study design

- Scent of host animals

 ![Scent of host animals](image)

- Windbreaks

 ![Windbreaks](image)

- Interactions:

 Host animals * Windbreaks
 Wind speed * Windbreaks, Temperature^2

Wind effects:

- Full effect
- Half effect
- No effect
Dataset

Analysis of 8 days: 5180 female vectors

<table>
<thead>
<tr>
<th>Day</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. obsoletus</td>
<td>316</td>
<td>259</td>
<td>612</td>
<td>2</td>
<td>93</td>
<td>95</td>
<td>29</td>
<td>253</td>
<td>1659</td>
</tr>
<tr>
<td>C. pulicaris</td>
<td>1524</td>
<td>335</td>
<td>952</td>
<td>4</td>
<td>190</td>
<td>223</td>
<td>33</td>
<td>260</td>
<td>3521</td>
</tr>
</tbody>
</table>
Dataset

- Temperature: 12 – 20°C
- Wind speeds: 0.2 – 3.3 m/s

Procedures

- Normalize data
- Random effect → Mixed Effects Model
- Observations not independent...
Data analysis

Spatial correlation

• *All information on the surroundings for a trap is contained within the neighbors*

• $X \mid X Y \mid \text{Neighbors}$

• $\text{Corr}(X, \text{Neighbor}) = \rho$
Final model

- *C. pulicaris estimates*

\[
\begin{align*}
\text{Wind speed:} & \quad -0.56 \\
\text{Windbreaks:} & \quad 2.34 \\
\text{Wind speed : Windbreaks :} & \quad -1.19
\end{align*}
\]

(adjusted for spatial correlation)

- *Spatial correlation coefficient, } \rho = 0.26***
Final model

- *C. obsoletus estimates*

 Wind speed: -0.59

 (adjusted for spatial correlation)

- *Spatial correlation coefficient, ρ = 0.33***

 N.S.
Conclusions

• Temperature not significant

• Breeding sites not significant

• Host animals not significant

• Windbreaks significant for *C. pulicaris*

• Wind speed significant
Current research

- Optimized autocorrelation

- More covariates:
 - Precipitation
 - Turbulence
 - Moisture

- More catch days
Thank you for your attention

Carsten Kirkeby
c kir@vet.dtu.dk

Acknowledgements:
Frank & Rune (Vallø Lam)
Birgit Kristensen (DTU VET)
Simon Haarder & Peter Iversen