Solid Oxide Electrolysis Cells - High pressure operation

Ebbesen, Sune Dalgaard

Publication date: 2013

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Solid Oxide Electrolysis Cells

- High pressure operation

Sune D Ebbesen
Department of Energy Conversion and Storage
Danish Technical University, DTU

SYMPOSIUM
Water electrolysis and hydrogen as part of the future Renewable Energy System
Copenhagen, May 10-11 2012
The Solid Oxide Cell (SOC) — Reversible, SOEC ↔ SOFC

- **Electrolysis Cell (SOEC)**
 \[H_2O \text{ (cathode)} \rightarrow H_2 \text{ (cathode)} + \frac{1}{2} O_2 \text{ (anode)} \]
 \[CO_2 \text{ (cathode)} \rightarrow CO \text{ (cathode)} + \frac{1}{2} O_2 \text{ (anode)} \]

- **Fuel Cell (SOFC)**
 \[H_2 \text{ (anode)} + \frac{1}{2} O_2 \text{ (cathode)} \rightarrow H_2O \text{ (anode)} \]
 \[CO \text{ (anode)} + \frac{1}{2} O_2 \text{ (cathode)} \rightarrow CO_2 \text{ (anode)} \]
The Solid Oxide Cell (SOC) — Reversible, SOEC ↔ SOFC

- Electrolysis Cell (SOEC)
 \[\text{H}_2\text{O} \text{(cathode)} \rightarrow \text{H}_2 \text{(cathode)} + \frac{1}{2} \text{O}_2 \text{(anode)} \]
 \[\text{CO}_2 \text{(cathode)} \rightarrow \text{CO} \text{(cathode)} + \frac{1}{2} \text{O}_2 \text{(anode)} \]

- Fuel Cell (SOFC)
 \[\text{H}_2 \text{(anode)} + \frac{1}{2} \text{O}_2 \text{(cathode)} \rightarrow \text{H}_2\text{O} \text{(anode)} \]
 \[\text{CO} \text{(anode)} + \frac{1}{2} \text{O}_2 \text{(cathode)} \rightarrow \text{CO}_2 \text{(anode)} \]

One major advantage of SOECs is the possibility to reduce CO\(_2\) to CO.
Solid Oxide Electrolysis Cells

Oxygen electrode
\[2O^{2-} \rightarrow O_2 + 4e^- \]

Fuel electrode
\[2H_2O + 4e^- \rightarrow 2H_2 + 2O^{2-} \]
\[2CO_2 + 4e^- \rightarrow 2CO + 2O^{2-} \]
Solid Oxide Electrolysis Cells
— Operation at high temperature

\[\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2}\text{O}_2 \]

\[\text{CO}_2 \rightarrow \text{CO} + \frac{1}{2}\text{O}_2 \]

Energy demand (kJ/mol) vs. Temperature (°C)

- Total energy demand (ΔH_f)
- Electrical energy demand (ΔG_f)
- Heat demand ($T \Delta S_f$)

\[
\frac{1}{n \cdot F} \cdot \text{Energy demand (Volt)}
\]
Renewable electricity

H₂O

Released to the atmosphere

4 e⁻

Electrolysis cell

2H₂O → 2H₂ + O₂
2CO₂ → 2CO + O₂

Vision
Renewable electricity

\[\text{E} \quad \text{\(\rightarrow \)} \quad \text{H}_2\text{O} \]

Released to the atmosphere

\[4 \text{ e}^- \quad \text{\(\rightarrow \)} \quad \text{Electrolysis cell} \]

\[2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 \]
\[2\text{CO}_2 \rightarrow 2\text{CO} + \text{O}_2 \]

Fuel synthesis

\[2\text{H}_2 + \text{CO} \rightarrow \text{CH}_2^- + \text{H}_2\text{O} \]

Fuel transport

Vision
Renewable electricity

H₂O

Released to the atmosphere

4 e⁻

Electrolysis cell

2H₂O → 2H₂ + O₂

2CO₂ → 2CO + O₂

CO₂ in the atmosphere

Synthetic petrol/diesel

Fuel synthesis

2H₂ + CO → –CH₂– + H₂O

Fuel transport

H₂O

Consumption

CO₂

Collection

CO₂ + 2 OH⁻ (membrane) → H₂O + CO₃²⁻ (membrane)

Renewable electricity

H₂O

Concentrated CO₂

Vision
Vision
— Collection of CO₂ from the atmosphere

CO₂ in the atmosphere

Electrolysis cell
2H₂O → 2H₂ + O₂
2CO₂ → 2CO + O₂

CO₂ collection
CO₂ + 2OH⁻ (membrane) ⇌ H₂O + CO₃²⁻ (membrane)

Fuel synthesis
2H₂ + CO → -CH₂− + H₂O

Synthetic petrol/diesel

Fuel transport

Consumption

Renewable electricity

H₂O

Vision — Collection of CO₂ from the atmosphere

CO₂ in the atmosphere

Electrolysis cell
2H₂O → 2H₂ + O₂
2CO₂ → 2CO + O₂

CO₂ collection
CO₂ + 2OH⁻ (membrane) ⇌ H₂O + CO₃²⁻ (membrane)

Fuel synthesis
2H₂ + CO → -CH₂− + H₂O

Synthetic petrol/diesel

Fuel transport

Consumption

Renewable electricity

H₂O

Vision — Collection of CO₂ from the atmosphere

CO₂ in the atmosphere

Electrolysis cell
2H₂O → 2H₂ + O₂
2CO₂ → 2CO + O₂

CO₂ collection
CO₂ + 2OH⁻ (membrane) ⇌ H₂O + CO₃²⁻ (membrane)

Fuel synthesis
2H₂ + CO → -CH₂− + H₂O

Synthetic petrol/diesel

Fuel transport

Consumption

Renewable electricity

H₂O
Vision
— Collection of CO₂ from industries

Renewable Electricity

H₂O Released to the atmosphere

Electrolysis cell

\[2 \text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 \]

\[2\text{CO}_2 \rightarrow 2\text{CO} + \text{O}_2 \]

Fuel synthesis

2H₂ + CO → -CH₂- + H₂O

Synthetic petrol/diesel

Fuel transport

Consumption

H₂O Released to the atmosphere

CO₂ Released to the atmosphere

Concentrated CO₂

Vision — Collection of CO₂ from industries
Vision
— Collection of CO_2 from power plants

Diagram

- **Electrolysis cell**

 $2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2$

 $2\text{CO}_2 \rightarrow 2\text{CO} + \text{O}_2$

- **Fuel synthesis**

 $2\text{H}_2 + \text{CO} \rightarrow \text{CH}_2 + \text{H}_2\text{O}$

- **Production of Synthetic petrol/diesel**

- **Fuel transport**

- **Consumption**

- **Concentrated CO$_2$**

- **(Renewable) Electricity**

- **H_2O Released to the atmosphere**

- **CO_2 Released to the atmosphere**
Vision
— Storing renewable electricity via Natural Gas

Electrolysis cell
2H₂O → 2H₂ + O₂
2CO₂ → 2CO + O₂

Fuel synthesis
H₂ + CO → CH₄

CO₂
Released to the atmosphere

H₂O
Released to the atmosphere

StORAGE
and consumption
Natural gas burners

Fuel transport

Consumption

2O²⁻

4 e⁻

(Renewable)
Electricity

CO₂

H₂O

CO₂
Released to the atmosphere

H₂O
Consumption

CO₂
Released to the atmosphere
Vision
— Biogas upgrading

\[\begin{align*}
\text{Electrolysis cell} & : 2\text{H}_2\text{O} & \rightarrow & 2\text{H}_2 + \text{O}_2 \\
& & 2\text{CO}_2 & \rightarrow 2\text{CO} + \text{O}_2 \\
& & 2\text{O}^2- & \rightarrow & 4e^- + \text{H}_2 \text{O} \\
\text{Fuel synthesis} & : \text{CH}_4 + \text{H}_2 + \text{CO} & \rightarrow & \text{CH}_4 \\
\text{Storage and consumption} & : \text{Natural gas burners} \\
\text{CO}_2 & \text{Released to the atmosphere} \\
\text{H}_2\text{O} & \text{Released to the atmosphere} \\
\text{H}_2\text{O} & \text{Fuel transport} \\
\text{Consumption} & \text{(Renewable) Electricity} \\
\text{CH}_4 & \text{H}_2\text{O} + \text{CO}_2
\end{align*} \]
Vision

• Production of synthetic fuels from renewable electricity (wind) and:
 – CO_2 from the atmosphere
 – CO_2 from the industry
 – CO_2 from biomass fired power plants

• Storage of renewable electricity via synthetic fuels and the natural gas grid

• Biogas upgrading
The Solid Oxide Cell (SOC)
— Reversible, SOEC ↔ SOFC

• Electrolysis Cell (SOEC)
 \[\text{H}_2\text{O} \text{ (cathode)} \rightarrow \text{H}_2 \text{ (cathode)} + \frac{1}{2} \text{O}_2 \text{ (anode)} \]

• Fuel Cell (SOFC)
 \[\text{H}_2 \text{ (anode)} + \frac{1}{2} \text{O}_2 \text{ (cathode)} \rightarrow \text{H}_2\text{O} \text{ (anode)} \]

Conditions: 850°C, 50% H\textsubscript{2}O – 50% H\textsubscript{2}
Electrolysis durability at low current density—Cleaned inlet gases and improved setup

Conditions:
Steam electrolysis: 850°C, -0.50 A/cm², 50% H₂O – 50% H₂
CO₂ electrolysis: 850°C, -0.25 A/cm², 70% CO₂ – 30% CO
Co-electrolysis: 850°C, -0.25 A/cm², 45% CO₂ – 45% H₂O – 10% H₂
Electrolysis durability at low current density
—Cleaned inlet gases and improved setup

No degradation or even activation with clean inlet gases and a setup without contaminants

Conditions:
Steam electrolysis: 850ºC, -0,50 A/cm², 50% H₂O – 50% H₂
CO₂ electrolysis: 850ºC, -0,25 A/cm², 70% CO₂ – 30% CO
Co-electrolysis: 850ºC, -0,25 A/cm², 45% CO₂ – 45% H₂O – 10% H₂
Electrolysis durability at high current density
Electrolysis durability at high current density
— Standard Ni-YSZ based cells with LSM O_2 electrode

Conditions: $1.0 \, A/cm^2$, 45% CO$_2$ – 45% H$_2$O – 10% H$_2$
Electrolysis durability at high current density
— Today

Conditions: 850ºC, -1.0 A/cm², 45% CO₂ – 45% H₂O – 10% H₂
Electrolysis durability at high current density — Today

Conditions: 850°C, -1.0 A/cm², 45% CO₂ – 45% H₂O – 10% H₂
Electrolysis durability at high current density — Today

Conditions: 850°C, -1.0 A/cm², 45% CO₂ – 45% H₂O – 10% H₂
Electrolysis durability at high current density — Today

Ni/YSZ electrode

Reference

Tested cell

LSM/YSZ electrode

Reference

Tested cell

Conditions: 850°C, -1.0 A/cm², 45% CO₂ - 45% H₂O - 10% H₂
Electrolysis durability at high current density
— Today

LSM/YSZ electrode

Conditions: 850°C, -1.0 A/cm², 45% CO₂ – 45% H₂O – 10% H₂
Vision
— Synthesis at increased pressure

Renewable electricity

H₂O
Released to the atmosphere

Synthetic petrol/diesel

CO₂ in the atmosphere

Fuel synthesis
2H₂ + CO → -CH₂- + H₂O

Fuel transport

CO + H₂

Consumption

Electrolysis cell
2H₂O → 2H₂ + O₂
2CO₂ → 2CO + O₂

Fuel synthesis

CO₂ collection
CO₂ + 2OH⁻ (membrane) → H₂O + CO₃²⁻ (membrane)

Synthetic petrol/diesel

CO₂

H₂O

Renewable electricity

H₂O

Concentrated CO₂
Vision

— Synthesis at increased pressure

1) Durable stacks (proven up to -0.75 A/cm²)
2) Stacks operated at pressure up to 50 bar
3) Fuel synthesis (proven technology)
Vision
— Synthesis at increased pressure
Summary

• The Solid Oxide Cells are fully reversible

 Fuel cell operation \leftrightarrow Electrolysis operation

• Degradation is more severe in electrolysis mode compared to fuel cell mode

• Degradation at mild conditions is related to impurities

 This degradation can be avoided by cleaning for impurities

• At harsh conditions structural changes occur in the cells

 Need cells with lower polarisation \rightarrow lower degradation

• Cells can be operated safely at current densities up to -0.75 A/cm2 at 850°C

• Operation at high pressure advantageous for system integration

• Solid Oxide Electrolysis cells may contribute to storage of renewable electricity
Acknowledgement

- The Danish National Advanced Technology Foundation’s advanced technology platform “Development of 2nd generation bioethanol process and technology”

- Danish Council for Strategic Research, via the Strategic Electrochemistry Research Center

- European Commission via the project “Hi2H2”

- European Commission via the project “RelHy”

- EUDP via the project “Green Natural Gas”

- Danish PSO via the project “PlanSOEC”

- Danish PSO via the project “Durable solid oxide electrolysis cells and stacks”

- DTU Energy Conversion (Former Risø DTU) via the project SOECcell

- Topsoe Fuel Cell A/S (TOFC)