The future sea-level rise contribution of Greenland’s glaciers and ice caps

Machguth, H.; Rastner, P.; Bolch, T.; Mölg, N.; Sørensen, Louise Sandberg; Aðalgeirsdottir, G.; van Angelen, J. H.; van den Broeke, M. R.; Fettweis, X.

Published in:
Environmental Research Letters

Link to article, DOI:
10.1088/1748-9326/8/2/025005

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
The future sea-level rise contribution of Greenland’s glaciers and ice caps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2013 Environ. Res. Lett. 8 025005
(http://iopscience.iop.org/1748-9326/8/2/025005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.208.103.74
The article was downloaded on 12/04/2013 at 11:01

Please note that terms and conditions apply.
The future sea-level rise contribution of Greenland’s glaciers and ice caps

H Machguth, P Rastner, T Bolch, N Mölg, L Sandberg Sørensen, G Aðalgeirsdottir, J H van Angelen, M R van den Broeke and X Fettweis

1 Department of Geography, University of Zurich, Switzerland
2 Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
3 Institute for Cartography, Technical University Dresden, Germany
4 Technical University of Denmark, Kongens Lyngby, Denmark
5 Danish Meteorological Institute (DMI), Copenhagen, Denmark
6 Institute for Marine and Atmospheric Research (IMAU), Utrecht, The Netherlands
7 Department of Geography, University of Liège, Liège, Belgium

E-mail: horst.machguth@geo.uzh.ch

Received 31 July 2012
Accepted for publication 13 March 2013
Published 11 April 2013
Online at stacks.iop.org/ERL/8/025005

Abstract

We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland’s glaciers and ice caps (GICs, ∼90,000 km²) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR. Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 m resolution digital elevation model yielding a high level of detail and ensuring that important feedback mechanisms are considered. The mass loss of all GICs by 2098 is calculated to be 2016 ± 129 Gt (HIRHAM5 forcing), 2584 ± 116 Gt (RACMO2) and 3907 ± 108 Gt (MAR). This corresponds to a total contribution to sea-level rise of 5.8 ± 0.4, 7.4 ± 0.3 and 11.2 ± 0.3 mm, respectively. Sensitivity experiments suggest that mass loss could be higher by 20–30% if a strong lowering of the surface albedo were to take place in the future. It is shown that the sea-level rise contribution from the north-easterly regions of Greenland is reduced by increasing precipitation while mass loss in the southern half of Greenland is dominated by steadily decreasing summer mass balances. In addition we observe glaciers in the north-eastern part of Greenland changing their characteristics towards greater activity and mass turnover.

Keywords: Greenland, glaciers and ice caps, sea level rise contribution, climate model output, glacier retreat parameterization

1. Introduction

Glaciers and ice caps (GICs) of most regions in the world are currently undergoing strong changes. Retreat and mass loss are also observed on the GICs of Greenland (e.g. Knudsen and Hasholt 2008, Bolch et al 2013). The recently published glacier inventory of Greenland (Rastner et al 2012) revealed that the surface area of GICs amounts to ∼90,000 km² (∼12% of the total GICs on earth), considerably more than previously estimated. Hence there is a considerable potential for sea-level rise that has so far received limited attention compared to other Arctic regions such as Svalbard (e.g. Nuth et al 2010) or the Canadian Arctic (e.g. Gardner et al 2011).

In the majority of studies focusing on future changes of GICs, these are treated as abstracted and simplified
objects. For instance Raper and Braithwaite (2006) address GICs as size distributions of glacier areas and volumes in 1° latitude/longitude cells. Radić and Hock (2011) approximate the hypsometry of mountain glaciers by linearly increasing the area per elevation-band from zero at the terminus to a maximum at the mean altitude and a linear decrease above. Such abstractions of glaciers allow for a computationally efficient handling of very large glacier samples. However, it is difficult to assess to what degree abstract representations of glaciers are representative for real conditions.

These issues motivate the development of modeling approaches aiming at a more realistic representation of large glacier samples including important mechanisms such as the feedback of glacier thinning on glacier mass balance. The impact of this feedback process strongly depends on the hypsometry of each individual glacier: flat glaciers can lose considerable portion of their accumulation area due to surface lowering while steep glaciers are less sensitive to this effect (Jiskoot et al 2009).

The above considerations point out the importance of taking characteristics of individual glaciers into account when modeling future extent and volume changes. On GICs a high level of detail is required for accurate representation of complex glacier topography and surface mass balance distribution. Sufficient input data for comprehensive modeling of ice dynamics and mass balance is only available for a few well studied (and mostly small) glaciers (e.g. Zwinger and Moore 2009). For larger glacier samples more simple approaches are applied: Huss et al (2008, 2010a), Salzmann et al (2012) combined glacier mass balance models with the so called ‘Δh glacier retreat parameterization’ (Huss et al 2010b) to model future glacier extent and volume of glacierized catchments in the Swiss Alps.

In the present study we apply a similar approach as in Salzmann et al (2012) to calculate future scenarios of Greenland’s GICs from the year 2000 to 2098 and their contribution to sea-level rise. We combine DEMs, satellite derived glacier inventory data, surface elevation changes measured from ICESat, mass balance and ice thickness measurements as well as gridded climate model output to achieve a more realistic representation of Greenland’s GICs in future-scenario calculations. Glacier surface mass balance and glacier retreat scenarios are computed for six selected regions and ultimately upscaled to all of Greenland’s GICs.

2. Study area and data

The newly established Greenland glacier inventory (Rastner et al 2012) was used as baseline information of glacier extents. The inventory includes all GICs on Greenland at a spatial resolution of 30 m and is derived from Landsat scenes acquired mostly in between 1999 and 2002. GICs are divided into three classes of connectivity to the ice sheet: CL0 (no connection), CL1 (weakly connected) and CL2 (strongly connected). CL0 and CL1 are glaciers dynamically independent of the ice sheet, CL2 ice bodies are of local character but dynamically not independent from the ice sheet. According to Rastner et al (2012), the area of Greenland’s GICs amounts to ~90 000 km² (CL0 and CL1) or ~130 000 km² (all three connectivity classes). The area of CL0 and CL1 glaciers amounts to ~150% of earlier estimates (e.g. Weidick and Morris 1998, Radić and Hock 2011).

Six regions of Greenland were selected for detailed modeling of glacier mass balance and glacier retreat (table 1 and figure 1). The regions were chosen to represent the different climatic regions of Greenland and to achieve an optimum availability of input and validation data for the modeling. All of the six regions include glaciers with mass balance observations, ice thickness measurements and meteorological stations of the Danish Meteorological Instutit (DMI): (1) the southernmost tip of Greenland (henceforward called ‘South’), (2) the Sukkertoppen area in the south-west dominated by two larger ice caps (‘Sukkertoppen’), (3) a region in the south-east including Mittivakkat glacier, Greenland’s only GIC with a longer-term mass balance series (‘Mittivakkat’), (4) the Stauning Alper in the central east comprising rugged mountain terrain with valley glaciers but also ice caps (‘Stauning’), (5) the area around the Zackenberg research station in the north-east (‘Zackenberg’) and (6) in the far north the area around Hans Tausen ice cap (‘North’).

In total these six regions include 17 660 km² of GICs, corresponding to 20% of all CL0 and CL1 glaciers in Greenland.

Figure 1. The six selected regions (red rectangles) and locations of field observations are marked on the map. The five sectors used for the extrapolation of the modeled mass loss are shown in dark-green.
3. Mass balance modeling

Mass balance distribution for all glaciers of the six selected regions (section 2) is computed at a spatial resolution of 250 m. The applied glacier mass balance model is a simplified version of more sophisticated energy balance approaches. Here we briefly summarize the model as a detailed description is given by Machguth et al. (2009).

The model runs at daily steps, and the cumulative mass balance \(b_c \) on day \(t + 1 \) is calculated for every time step and over each grid cell of the DEM according to Oerlemans (2001):

\[
b_c(t + 1) = b_c(t) + \left\{ \begin{array}{ll}
\Delta t \cdot (-Q_m) / l_m + P_{\text{solid}} & \text{if } Q_m > 0 \\
\Delta t \cdot P_{\text{solid}} & \text{if } Q_m \leq 0
\end{array} \right.
\]

where \(t \) is the discrete time variable, \(\Delta t \) is the time step (one day), \(l_m \) is the latent heat of fusion of ice (334 kJ kg\(^{-1}\)) and \(P_{\text{solid}} \) is solid precipitation in meter water equivalent (m w.e.). The energy available for melt \((Q_m) \) is calculated as follows:

\[
Q_m = (1 - \alpha) S_m + C_0 + C_1 T
\]

where \(\alpha \) is the albedo of the surface, \(T \) is the air temperature (in °C at 2 m above ground and outside the glacier boundary layer), and \(C_0 + C_1 T \) is the sum of the long-wave radiation balance and the turbulent exchange linearized around the melting point (Oerlemans 2001). Global radiation \((S_m) \) is calculated from potential clear sky global radiation \((S_{m, \text{clr}}) \) and fractional cloud cover \((n) \). Both the direct and diffuse part of \(S_{m, \text{clr}} \) are computed in a preprocessing routine according to Corripio (2003); Iqbal (1983), considering all effects of surface topography including shading and assuming standard atmospheric transmission coefficients for clear sky conditions. During the mass balance model run, \(S_m \) of every individual time step is computed from preprocessed \(S_{m, \text{clr}} \) and attenuation of clouds \((\tau_{cl}) \). The latter is derived from RCM fractional cloud cover at the actual time step according to an empirical relationship derived from observations on the Greenland ice sheet (GrIS) (Konzelmann et al. 1994):

\[
\tau_{cl} = 1.0 - b n^2 - \exp(-cz)
\]

with \(b = 0.78 \) and \(c = 0.00085 \) being constants and \(z \) the surface elevation above sea-level.
The source of accumulation is precipitation (P) and a threshold temperature (T\text{snow}) of 1.5 °C in combination with a transition range of 0.5 °C (i.e. linear increase of the rain fraction from 0% at 1 °C to 100% at 2 °C) is used to distinguish P\text{solid} from rain. Redistribution of snow by wind or avalanches is not considered in the model. Refreezing is calculated according to Pfeffer et al (1991), expressing the amount of melt water (M) that can be retained as a ratio of annual accumulation (C):

\[
\frac{M}{C} \geq \left[\frac{c}{T_m} \frac{\rho_{pc} + \rho_c}{\rho_c} \right]^{-1} \left[1 + \frac{\rho_{pc} + \rho_c}{\rho_c} \right] \quad (4)
\]

Thereby \(c \) refers to the heat capacity (1950 J K\(^{-1}\) kg\(^{-1}\)) of ice and \(\rho_{pc} \) is the pore close-off density (830 kg m\(^{-3}\)). The initial firn temperature (\(T_i \)) at the onset of the melt season (in positive degrees Celsius below freezing, (cf Pfeffer et al 1991)) is here calculated as the mean annual air temperature of the preceding three years. The initial firn density (\(\rho_c \)) is set equal to snow density and is derived from an empirical relationship based on observations from the GrIS (Reeh et al 2005):

\[
\rho_c = 0.625 + 18.7 T_i + 0.293 T_i^2. \quad (5)
\]

Glaciers are regarded as debris-free which is a reasonable assumption for the bulk of Greenland’s GICs (cf Rastner et al 2012). Depending on the surface characteristics (snow, firn or ice) three different constant values for the surface albedo are used in the model: \(\alpha_s = 0.75, \alpha_f = 0.55 \) or \(\alpha_i = 0.40 \) (\(\alpha_i \) calibrated to 0.35 for the regions ‘South’ and ‘Mittivakkat’, cf table 1). Accumulated snow is assigned \(\alpha_f \) when its age exceeds 1 year and after 2 years its albedo is lowered to \(\alpha_i \). This parameterization aims at approximating the albedo lowering related to the snow aging and is not meant to simulate the actual conversion from snow to ice that take much longer on most of Greenland’s glacier surfaces (e.g. Reeh et al 2005).

4. Coupling of mass balance model to RCM data

The mass balance model is forced from daily gridded RCM output. Rugged high mountain topography is not represented by the coarse spatial resolution of RCMs which is a main reason for biases or shifted pattern in meteorological variables (e.g. Franco et al 2012). The biases are addressed through (1) downscaling, (2) bias correction and (3) mass balance model calibration (cf Salzmann et al 2012, Machguth et al 2012). The three stages are described in the following sub-sections and their position in the modeling process is shown in figure 2.

4.1. Downscaling of the RCM data and bias correction

The simple downscaling procedure includes two steps: (1) The RCM grids (\(n, T \) and \(P \)) are interpolated to the resolution of the DEM (here 250 m) by means of inverse distance weighting (IDW) followed by (2) the application of sub-grid parameterizations (cf Machguth et al 2009). Prior to the interpolation of \(T \) the strong dependence on altitude is removed by reducing \(T \) to a standard altitude \(z_{\text{ref}} = 0 \) m a.s.l. by means of altitudinal gradients \(\gamma_T \) where \(i \) denotes the number of the month (1–12). The atmospheric lapse rates \(\gamma_T \) were defined according to the empirically derived findings from Fausto et al (2009). We use the values derived by Fausto et al (2009) including the land stations. Fausto et al (2009) published only annual-mean and July \(\gamma_T \) and thus we reconstruct the lapse rates for the remaining months using linear interpolation.

In step (2) simple parameter specific (\(T, P, S_m \)) sub-grid parameterizations are applied to account for the major components of the small-scale influences of the rugged topography. Sub-grid scale variability of \(T \) is addressed by adjusting \(T \) from \(z_{\text{ref}} \) to the elevation of the DEM using the lapse rates \(\gamma_T \). The same method is applied for \(P \) but the difficulty is to define a vertical gradient in precipitation (\(p_p \)) as reliable observations of \(P \) in Greenland’s mountain areas do not exist. As a proxy for \(p_p \) we use observed winter mass balance distributions from the only two longer-term

![Flowchart of the modeling process. Steps related to the simple downscaling-approach are highlighted in light-green, de-biasing in light-blue and mass balance model calibration in light-red. Arrows with dotted lines denote manual steps. Note that for each region the conditions 1–3 are first tested for \(\sum B_a \text{meas} = \sum B_a \text{intermediate} \). Calibrated values \(\alpha_i, C_0, C_1 \) and \(T_{\text{offset}} \) are then used in the calibrations to \(\sum B_a \text{ref} = \sum B_a \text{maximum} \) and \(\sum B_a \text{minimum} \) where the conditional steps (1) and (3) are omitted.](image-url)
mass balance series: The 10 year series from Amitsuloq ic
cap in the south-west reveals a weak negative trend with
altitude (cf Ahlstrøm et al 2007) while on Mittivakkat an
increase in accumulation with elevation is observed (Knudsen
and Hasholt 2008). The two series cannot be regarded
representative for the whole of Greenland, but due to a lack
of other data an intermediate value of 0.3 m precipitation
increase per 100 m elevation increase was applied for all
regions. It should be noted that γTi and γP address only
variability on the sub-grid scale and their influence decreases
when the topography at the resolution of the mass balance
model approaches the topography at the RCM resolution.
Hence their influence is at maximum in rugged alpine
topography and limited on larger ice caps.

The preprocessed grids of clear sky global radiation
(section 3) account for the topographic sub-grid scale
variability (i.e. exposition, slope and shading) while the
temporally and spatially variable influence of cloudiness is
derived directly from the interpolated fields of n (cf
Machguth et al 2009). Cloudiness is directly interpolated to
the resolution of the mass balance model by means of IDW
because daily mean n is distributed rather smoothly in space.

Downscaled RCM fields require additional bias correction
in T, S0 and P for accurate mass balance calculations
(Machguth et al 2012). On Greenland, however, bias correction
is hampered by the limited number of meteorological
parameters being measured (only few weather stations do
record S0 or n) but also by the fact that most weather stations
are located directly at the coast and are not representative
for higher elevations (e.g. due to frequent inversions, Hansen
et al 2008). In addition, comparing a coastal station with
coarse resolution (11–25 km) RCM grid cells that might be
of surface type ‘ocean’, bears the risk to establish
unreasonable bias corrections. Hence a direct bias correction
is performed (i) only for T and (ii) only for selected regions
where suitable weather stations (located away from the open
ocean) are available. Where these conditions are fulfilled
(table 1) the mean deviation between observed and modeled
T (1980–2010) for every day of the year was calculated. At
every time step during the model run, T was then corrected by
adding the offset to the downscaled temperature field. Note
that this kind of bias correction does not change the future
trends in T as prescribed by the RCM data.

4.2. Mass balance model calibration

Figure 2 visualizes the process of mass balance model
calibration in the context of the full modeling chain. Calibration
of the mass balance model is challenging because the
driving RCMs are forced from GCM data, and thus
modeled mass balance must be compared to observations
representing climatological means. Hence model output
(driven from downscaled and de-biased RCM data) for the
time period 1980–2010 was compared to our ‘best guess’
in mean summer mass balance and total cumulative mass
balance ∑ Ba. We emphasize the term ‘best guess’ because
in no case a complete 30 years time series is available:
Mittivakkat (Knudsen and Hasholt 2008) is the longest series
(15 years in the time frame 1995–2010) and Amitsuloq

Modeled summer-melt is adjusted to the measurements
in a first calibration step (‘melt calibration’ in figure 2).
However available summer mass balance observations do in
most regions only cover one to three years which is too
short for an automated and systematic adjustment of the
model parameters. Thus calibration is restricted to a manual
qualitative comparison and adjustment of model parameters
C0, C1 and α (cf table 1).

After RCM downscaling, correction of T-bias and the
 aforementioned summer mass balance calibration, there is still
considerable inaccuracy in modeled glacier mass balances.
A main reason is the generally large differences of RCM
precipitation pattern and the largely unknown real-world
precipitation distribution (Machguth et al 2012). In addition,
the RCMs are driven by ECHAM5 and HadGEM2 that fail to
simulate the current climate over Greenland (Fettweis et al
2013). Such biases in the forcing GCMs impact the RCM
results and affects our mass balance reconstruction. This
explains why corrections are needed here. The comparison
with the observations would be better if the RCMs were to
be driven by reanalyses but no future projection is available
in this case.

Hence it is justified to use P as an ultimate mean of model
calibration (‘calibration MP’ in figure 2). It was assumed
that the modeled ∑ Ba 1980–2010 of each glacier must be
identical to our best guess of observed ∑ Ba and P was tuned
to achieve agreement. Our best guess of ∑ Ba was derived
as follows: For the decade 1980–1990 we assumed that
Greenland GICs were in a balanced state as it was roughly
the case for the GrIS (Ohmura et al 1999) and Mittivakkat glacier
(Knudsen and Hasholt 1999). For the decade 2000–2010 we
assumed that the mass balance is well represented by the
region specific mean ICESat derived mass balance for the time
period 2003–2008 (Bolch et al 2013). Comparably little is
know for 1990–2000 and we assumed that the mass balance
has linearly decreased from the 80s to the value of the decade
2000–2010. The sum of the three decadal values is the region
specific ∑ Ba which is assumed to be valid uniformly for
all glaciers of a region. The latter assumption is a strong
simplification but there is no data available to assess the
variability within a region. The precipitation adjustment is
performed individually for each modeled glacier to achieve
∑ Ba for 1980–2010. Only the cumulative mass balance is
forced to be ∑ Ba, variability of annual mass balance is
not affected. Precipitation is varied iteratively by adjusting a
temporally constant precipitation multiplication factor (MP)
until for each glacier a cumulative mass balance of ∑ Ba with
a tolerance of ±0.5 m w.e. results.

The calibration involves considerable uncertainties
because in part, the GCMs that force the RCMs are not
able to simulate the current mean climate and variability
over Greenland. To assess their impact, model calibrations
to three different values of ∑ Ba (minimum, maximum
and intermediate, table 1) are performed. The three values
are calculated for each selected region based on estimated
We assumed that each of the mass balance assumptions for the three decades has an (arbitrarily chosen) uncertainty of 25% of the total mass loss 1980–2010. Total uncertainty was calculated according to the laws of error propagation, assuming that the three decadal uncertainties are independent. The calibration to the three values of \(\sum B_a \) was performed for all three RCM forcings and subsequently applied for the respective future scenario runs, resulting in: 3 RCM forcings \(\times 3 \) calibrations = 9 future scenarios for each region. All applied values of \(\sum B_a \) for the selected regions are shown in table 1.

Any value of \(M_p \) below or above 1 will result in amplification or damping of the future trends in precipitation. To avoid strong modifications of the trend given by the GCM/RCM, calibrations to \(\sum B_a \text{ intermediate} \) were rejected when the regional mean \(M_p \) exceeds a (arbitrarily chosen) range of 0.8–1.2. Calibration was then repeated introducing a temperature offset (\(T_{\text{offset}} \)) applied uniformly to the entire region until \(M_p \) was within the limits (‘re-assessment \(T\)-bias’ in figure 2). We believe that such an additional bias correction for \(T \) is justified because (i) the aforementioned impact of \(M_p \) on future trends needs to be minimized and (ii), air temperature is subject to considerable uncertainties given the limited possibilities to determine bias in \(T \) (see section 4.1). Chosen \(T_{\text{offset}} \) are listed in table 1.

5. Glacier retreat modeling

5.1. Glacier bed topography calculation

Glacier bed topography is derived from modeled ice thickness. The chosen approach is based on the perfect plasticity assumption (cf Paterson 1994) and is described in full detail in Linsbauer et al (2012). Ice thickness is estimated at points along major central branch lines using an estimated basal shear stress \(\tau \) of 125,000 Pa. The ice thickness \(h \) at every individual point is derived from the zonal surface slope \(\alpha \) (surface slope around each point averaged over a 50 m elevation range along the branch lines) according to

\[
h = \frac{\tau}{f \rho_i g \sin \alpha}
\]

where \(f = \text{shape factor (0.8)}, \rho_i = \text{ice density (900 kg m}^{-3}\) and \(g = \text{acceleration due to gravity (9.81 ms}^{-2}\). Hence, estimated ice thickness is a function of surface slope. From the estimated point values ice thickness is interpolated to the entire glacier surface and bed topography is calculated by subtracting the distributed ice thickness from the surface DEM (Linsbauer et al 2012).

The given approach provides a rough approximation of ice thickness. On the one hand calculated values on valley glaciers are in reasonable agreement with the few available observations (e.g. Citterio and Mottram 2008, Knudsen and Hasholt 1999). On the other hand modeled ice thickness is inaccurate on ice caps where the assumption of constant \(\tau \) and \(f \) in connection with low quality DEM data in accumulation areas results in \(h \) of up to 2 km for ice caps with observed thickness of 400–600 m. Increasing \(f \) to 1, as appropriate for the central parts of ice caps where there is no marginal strain (cf Paterson 1994), would reduce \(h \) by 20% but values are still outside of a realistic range. Finally an approach was chosen where modeled \(h \) is limited to observed maximum ice thickness \((h_{\text{max}}) \) on the ice caps in the selected regions (table 1). After this correction modeled values are in the range of observations.

5.2. Parameterization of glacier retreat and volume change

Glacier retreat is simulated based on a \(\Delta h \) glacier retreat approach according to Huss et al (2010b). Glacier surface elevation change originating from ice dynamics and surface mass balance is parametrized by distributing volume gain or loss (resulting from the surface mass balance) over the entire glacier surface according to altitude dependent functions. These \(\Delta h \) functions (see next paragraph) are derived from previously observed changes in glacier thickness that incorporate both the influence of ice dynamics and surface mass balance. Glacierized grid cells become ice-free when their elevation falls below the altitude of the glacier bed. Glacier advance is not possible in the given approach. The \(\Delta h \) approach is mass-conserving with respect to the surface mass balance, i.e. mass loss or gain in the year \(m \) is converted into glacier thickness change and the DEM is updated at the onset of the year \(m + 1 \). Glacier surface mass balance calculation in the year \(m + 1 \) is performed on the updated topography and thus considers the feedback of surface elevation change on mass balance.

The applied \(\Delta h \) functions are derived from ICESat data for all GICs (Bolch et al 2013). For the four major regions of Greenland (cf Bolch et al 2013) an altitude-dependency of glacier thickness change and surface elevation change can be derived (figure 3). The \(\Delta h \) functions are calculated from normalized elevation extent and changes in \(h \) are forced to be 0 at the highest point and 1 at the lowest. This does not fully agree with the observations in all regions, but is required to guarantee a proper functioning of the \(\Delta h \) approach. Huss et al (2010b) recommend using different \(\Delta h \) functions for different glacier size classes. We use the functions displayed in figure 3 uniformly for all glaciers of a region because the number of ICESat points in insufficient to derive glacier-type specific \(\Delta h \) functions.

6. Sensitivity analysis

A sensitivity analysis is performed in a similar manner as presented by Salzmann et al (2012). Thereby (i) the influence of an expected albedo decrease was investigated by gradually lowering \(a_t \) from 0.4 to 0.2 during the time period 2020–2040, (ii) the respective \(\Delta h \) function was modified towards a more pronounced mass loss at the tongue (active glacier retreat) and a more uniform mass loss over the entire area (down wasting). To limit computation time the sensitivity experiments were only performed for the regions Sukkertoppen and Zackenberg under HIRHAM5 forcing and \(\sum B_a \text{ intermediate} \) calibration.
Figure 3. Observed dh/dt values (m a$^{-1}$), normalized dh/dt values and the derived Δh functions averaged over 100 m elevation intervals for the four main regions of Greenland (cf Rastner et al 2012, Bolch et al 2013, for the extent of the four regions). The error bars for dh/dt are given as 1σ of all dh/dt values in an elevation class. No standard deviation is calculated where less than five values are present in an elevation class.

7. Results

7.1. Modeled mass balance and glacier shrinkage

Our results indicate a decrease in ice volume for all six investigated regions. Thereby volume changes are smaller (−3% to −50%) from the central east to the very north and largest (−73% to −92%) in the south and south-east (figure 4). Absolute values of initial ice volume (V_{2000}) and area (A_{2000}) as well as final ice volume (V_{2098}) and area (A_{2098}) are given in table 2.

In general a realistic picture of modeled glacier retreat results (figures 5 and 6): The examples from the Sukkertoppen area show very pronounced retreat in the relatively moist near-coastal areas (figure 5(a)) and moderate changes of the Amitsuloq ice cap (figure 5(b)) which lies in the rain-shadow of larger ice caps and receives less precipitation. These results are in agreement with the expected larger climate sensitivity of more maritime glaciers (e.g. Oerlemans and Fortuin 1992). Mittivakkat glacier (figure 5(c)) has retreated by approx. 5 km by 2098, corresponding to a retreat rate of 50 m a$^{-1}$. The large valley glaciers in the Stauning Alper (figure 6) have retreated by 4–7 km, yielding an annual retreat rate of roughly 40–70 m.

The MAR forcing results in the strongest mass loss for all regions (figure 4) and differences to the HIRHAM5 forcing are significant although the two RCMs are forced by the same GCM fields (ECHAM5 under the A1B emission scenario). The main reason for the stronger mass loss under MAR forcing is a more pronounced decrease in summer mass balance (B_s) (figure 7) in the north-eastern and northern regions. Trends in B_s in the southerly regions (Sukkertoppen, South and Mittivakkat) are more similar for all three forcings but MAR is still the most negative. More negative B_s must be related to a more pronounced warming. In a comparison study focused on the GrIS, Rae et al (2012) show that when downscaling the same GCM scenario (ECHAM5-A1B) MAR will have stronger future (2000–2099) warming trend than HIRHAM5. Thereby strongest deviations are observed in the north-eastern marginal regions of the ice sheet, close to the regions where this study finds the largest differences. However, the findings of Rae et al (2012) refer to the ice sheet while the mass balance model in the present study is mainly forced with RCM output from grid cells that are ice-free in the RCMs: when using MAR and HIRHAM5 78% of the area of the modeled GICs is located on RCM cells with surface type ‘land’. RACMO2 cells can have fractional ice cover and the average ice cover fraction of the grid cells underlying the modeled GIC is 54%. HIRHAM5 and RACMO2 forcing result in similar glacier changes with mass loss being overall larger under RACMO2 forcing. All three forcing fields obtained with the RCM downscaling runs generate similar trends in winter mass balance (B_w) despite the different emission scenarios and GCM forcing fields:
Figure 4. Volume change relative to the initial volume for all six selected regions (HIR = HIRHAM5 and RAC = RACMO2). The solid lines denote the mode calibration intermediate while the dashed lines represent the calibrations minimum and maximum.

B_w shows clearly increasing trends from the central east to the very north (Stauning, Zackenberg and North) and no trends for the more southerly regions. When forcing the model with the output from RACMO and HIRHAM5 the increase in B_w in the three northern regions almost counterbalances the decrease in B_s, under MAR the decrease in B_s dominates for all regions.

Figure 7 shows for the Mittivakkat region a systematically lower B_w under the MAR forcing. The reason is that MAR strongly underestimates precipitation in the area and that T was lowered by 1.5 K to avoid strong precipitation corrections that would impact on the future precipitation trend. However, the temperature lowering results in a smaller glacier mass turnover and thus likely a lower sensitivity to climate change. The issue could only be solved when precipitation is bias corrected without impacting on future trends. The Stauning Alper also show a lower value for B_w MAR. The reason is, however, different: B_s (MAR) over the calibration period is less negative and hence model calibration results in lower precipitation.

The aforementioned issues in model calibration are one of the reasons to perform three different calibrations for each region and each RCM forcing. The volume changes under calibrations minimum and maximum are shown as deviations (\pm) in table 2. The sensitivity analysis reveals that gradually lowering α_i to 0.2 from 2020 to 2040 and holding the albedo constant afterwards increases the volume loss for Zackenberg by 13 km3 or 24% compared to no albedo change. For the Sukkertoppen region the increase in volume loss reaches 78 km3 or 29%. Modifying the 1_h functions has a comparably small impact of approximately \pm2% for both regions.

7.2. Extrapolation to all Greenland GICs

We divided Greenland into five sectors to upscale modeled volume change from the modeled regions to the entire sectors
Figure 5. Examples of modeled glacier retreat (contour-lines represent surface topography in 2098): (a) Sukkertoppen region, modeled with RACMO2: South-west of the Sukkertoppen ice cap. The elongated ice cap in the south that has almost disappeared is the Tasersiaq ice cap which has a ten year record of mass balance observations. (b) Sukkertoppen region, modeled with RACMO2: The Amitsuloq ice caps to the north of Sukkertoppen. The ice cap has a ten year record of extensive mass balance observations. (c) A section of Mittivakkat region with Mittivakkat glacier (‘M’ on the map), modeled with HIRHAM5.

Table 2. Overview of modeled initial and final glacier volume and area in the six selected regions (A_{2000}, A_{2098} in km2; V_{2000}, V_{2098} in km3). The given values are based on the calibration to $\sum B_a$ intermediate while the deviations (\pm) are calculated from the calibrations maximum and minimum.

<table>
<thead>
<tr>
<th>Region</th>
<th>Model</th>
<th>A_{2000}</th>
<th>A_{2098}</th>
<th>V_{2000}</th>
<th>V_{2098}</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>HIRHAM5</td>
<td>4446</td>
<td>4386 ± 25</td>
<td>777</td>
<td>745 ± 10</td>
</tr>
<tr>
<td></td>
<td>RACMO2</td>
<td>4087 ± 48</td>
<td>3665 ± 57</td>
<td>685 ± 9</td>
<td>590 ± 10</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td></td>
<td>3665 ± 57</td>
<td>685 ± 9</td>
<td>590 ± 10</td>
</tr>
<tr>
<td>Zackenberg</td>
<td>HIRHAM5</td>
<td>1541</td>
<td>1210 ± 77</td>
<td>206</td>
<td>151 ± 10</td>
</tr>
<tr>
<td></td>
<td>RACMO2</td>
<td>1333 ± 56</td>
<td>875 ± 61</td>
<td>161 ± 9</td>
<td>101 ± 8</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td></td>
<td>875 ± 61</td>
<td>161 ± 9</td>
<td>101 ± 8</td>
</tr>
<tr>
<td>Stauning</td>
<td>HIRHAM5</td>
<td>3884</td>
<td>3402 ± 83</td>
<td>327</td>
<td>255 ± 14</td>
</tr>
<tr>
<td></td>
<td>RACMO2</td>
<td>3490 ± 85</td>
<td>2744 ± 149</td>
<td>266 ± 15</td>
<td>182 ± 13</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td></td>
<td>2744 ± 149</td>
<td>266 ± 15</td>
<td>182 ± 13</td>
</tr>
<tr>
<td>Mittivakkat</td>
<td>HIRHAM5</td>
<td>2222</td>
<td>805 ± 142</td>
<td>311</td>
<td>72 ± 14</td>
</tr>
<tr>
<td></td>
<td>RACMO2</td>
<td>874 ± 114</td>
<td>538 ± 108</td>
<td>84 ± 13</td>
<td>52 ± 9</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td></td>
<td>538 ± 108</td>
<td>84 ± 13</td>
<td>52 ± 9</td>
</tr>
<tr>
<td>South</td>
<td>HIRHAM5</td>
<td>170</td>
<td>31 ± 6</td>
<td>7.8</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>RACMO2</td>
<td>28 ± 6</td>
<td>27 ± 6</td>
<td>0.7 ± 0.2</td>
<td>0.7 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td></td>
<td>27 ± 6</td>
<td>0.7 ± 0.2</td>
<td>0.7 ± 0.1</td>
</tr>
<tr>
<td>Sukkertoppen</td>
<td>HIRHAM5</td>
<td>5398</td>
<td>4325 ± 90</td>
<td>1180</td>
<td>910 ± 23</td>
</tr>
<tr>
<td></td>
<td>RACMO2</td>
<td>4006 ± 90</td>
<td>3617 ± 100</td>
<td>804 ± 21</td>
<td>751 ± 21</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td></td>
<td>3617 ± 100</td>
<td>804 ± 21</td>
<td>751 ± 21</td>
</tr>
</tbody>
</table>
Table 3. Volume loss area scaling relationship calculated from the modeled volume loss of the six selected regions. For simplicity only the values based on the calibration to $\sum B_{a \text{ intermediate}}$ are given.

<table>
<thead>
<tr>
<th>Selected region</th>
<th>HIRHAM5</th>
<th>RACMO2</th>
<th>MAR</th>
<th>HIRHAM5</th>
<th>RACMO2</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>0.0045871</td>
<td>0.0371580</td>
<td>0.029589</td>
<td>1.0795</td>
<td>0.88507</td>
<td>1.0645</td>
</tr>
<tr>
<td>Zackenberg</td>
<td>0.0336320</td>
<td>0.0276310</td>
<td>0.048589</td>
<td>1.0113</td>
<td>1.00800</td>
<td>1.1294</td>
</tr>
<tr>
<td>Stauning</td>
<td>0.0061142</td>
<td>0.0055372</td>
<td>0.018061</td>
<td>1.2330</td>
<td>1.23410</td>
<td>1.1843</td>
</tr>
<tr>
<td>Mittivakkat</td>
<td>0.0333000</td>
<td>0.0339930</td>
<td>0.034105</td>
<td>1.2967</td>
<td>1.28680</td>
<td>1.3084</td>
</tr>
<tr>
<td>Sukkertoppen</td>
<td>0.0278680</td>
<td>0.0251590</td>
<td>0.028043</td>
<td>1.0928</td>
<td>1.19120</td>
<td>1.1941</td>
</tr>
<tr>
<td>South</td>
<td>0.0200270</td>
<td>0.0208730</td>
<td>0.020783</td>
<td>1.3689</td>
<td>1.34790</td>
<td>1.3582</td>
</tr>
</tbody>
</table>

Table 4. The five sectors of Greenland and extrapolated volume loss 2000–2098. The given values are based on the calibration to $\sum B_{a \text{ intermediate}}$ while the deviations (\pm) are calculated from the calibrations maximum and minimum.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Selected region</th>
<th>A_{2000} (km2)</th>
<th>ΔV (km3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HIRHAM5</td>
<td>RACMO2</td>
</tr>
<tr>
<td>North</td>
<td>North</td>
<td>39.327</td>
<td>−277 ± 98</td>
</tr>
<tr>
<td>East-North</td>
<td>Zackenberg</td>
<td>5.789</td>
<td>−200 ± 46</td>
</tr>
<tr>
<td>East-Central</td>
<td>Stauning</td>
<td>21.618</td>
<td>−302 ± 72</td>
</tr>
<tr>
<td>East-South</td>
<td>Mittivakkat</td>
<td>10.220</td>
<td>−970 ± 44</td>
</tr>
<tr>
<td>West</td>
<td>Sukkertoppen</td>
<td>12.765</td>
<td>−491 ± 41</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>89.719</td>
<td>−2240 ± 143</td>
</tr>
</tbody>
</table>

Figure 6. Stauning Alper: modeled glacier retreat (using MAR) for a number of valley glaciers. The elevation contours represent surface topography in 2098.
8. Discussion and conclusions

In the present study sea-level rise contribution from all local glaciers and ice caps on Greenland is modeled and a range of projections is defined by (i) using three different RCM forcings, (ii) performing three different mass balance model calibrations under each RCM forcing, and (iii) performing a sensitivity analysis to explore the effect of a potential decrease in ice albedo and variations in the applied Δh functions.

The choice of the forcing field strongly impacts on modeled sea-level rise contribution. Interestingly the results from the two RCM that are forced with the same GCM output fields diverg the most. A likely reason for these differences is the positive albedo feedback that enhances the warming and is considered in MAR but not in HIRHAM5. RACMO2 also takes into account the surface albedo feedback and this could partly explain the stronger mass loss under the RCP4.5 scenario (HadGEM2 RACMO2 forcing) compared to A1B (ECHAM5 HIRHAM5 forcing). The mass balance model calibration has for most regions a smaller impact. A statistical uncertainty range cannot be calculated based on three RCM forcings and hence we provide only modeled mass loss for the three forcings with their respective deviations resulting from the calibrations. The albedo sensitivity experiment indicates that lowering the ice albedo to 0.2 by 2040 increases mass loss by roughly 20–30%. A clear lowering trend in surface albedo is currently observed in the ablation area of the GrIS (Box et al. 2012). However, future projections of albedo change are of a speculative nature and therefore we do not consider the impact of albedo lowering in the final numbers. Nevertheless, the sensitivity experiment indicates that the given final numbers of mass loss are lower boundary estimates.

The modeled annual sea-level rise contribution (0.059 ± 0.004 mm HIRHAM5, 0.076 ± 0.003 mm RACMO2 and 0.114 ± 0.003 mm yr$^{-1}$ MAR) are in the range of the current contribution of 0.08 ± 0.03 mm yr$^{-1}$ from 2003 to 2008 (Bolch et al. 2013). Given the continued warming trend a higher contribution than observed today could be expected. The most likely reasons for the modeled rate of mass loss being similar to current observations are (i) the use of mid-range scenarios, (ii) the predicted increase in precipitation over large areas of GICs in the north-east and north, (iii) the fact that the fastest melting parts of the glaciers disappear first which results in an asymptotic behavior of the mass loss rate and (iv) the exclusion of all calving processes from the modeling chain. According to Bolch et al. (2013) the rate of mass loss of calving glaciers is 10% higher than for non-calving glaciers. However, continued glacier retreat might eventually reduce the impact of calving for many regions and a substantial part of the ice lost due to calving is below sea-level and will thus not contribute to sea-level rise.

The sea-level rate computed by Radič and Hock (2011) (0.036 ± 0.02 mm yr$^{-1}$) is only about half (when forced by HIRHAM5 and RACMO output fields) or a third (when forced by MAR output) of our results. However, Radič and Hock (2011) underestimated the surface area of Greenland’s GICs. When comparing mass loss per area-unit (here and in the following mass loss per area-unit is calculated based on the initial surface area used by the various studies) and considering also the uncertainties given by Radič and Hock (2011), the two studies are in reasonable agreement. Then again Marzeion et al. (2012) have calculated a higher sea-level rise contribution from Greenland’s GICs under the
Glacier Mass Balance Changes and Meltwater" 025005.

Acknowledgments

Henrik Højmark Thomsen and Anker Weidick provided most valuable help in tracking down almost forgotten data on ice thickness observations and mass balance. The comments and suggestions of three anonymous reviewers helped to improve the manuscript and are highly acknowledged. HM is supported by the PROMICE program for the monitoring of the Greenland ice sheet and GlacioBasis monitoring funded by the Danish Energy Agency. This work is supported by funding from the Ice2Sea program from the European Union 7th Framework Program, grant number 226375. Ice2Sea contribution number ice2sea135.

References

Cortijo J 2003 Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain Int. J. Geog. Inform. Sci. 17 1–23

Fettweis X 2007 Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR Cryosphere 1 21–40

Gogineni S et al 2001 Coherent radar ice thickness measurements over the Greenland ice sheet J. Geophys. Res. 106 33761–72

Hansen B U (ed) 2001 Climates of the past: from glacial to post-glacial conditions: the Pleistocene to the Holocene (Toronto: University of Toronto Press)

Huss M and Farinotti D 2012 Distributed ice thickness and volume of all glaciers around the globe J. Geophys. Res. 117 F04010

Huss M, Farinotti D, Bauder A and Funk M 2008 Modelling runoff from highly glacierized and alpine drainage basins in a changing climate Hydrol. Process. 22 3888

Huss M, Usellmann S, Farinotti D and Bauder A 2010a Glacier mass balance in the south-eastern Swiss Alps since 1900 and perspectives for the future Erkundane 64 119–40

Iqbal M 1983 An Introduction to Solar Radiation (Toronto: Academic)

Linsbauer A, Paul F and Haebeli W 2012 Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach J. Geophys. Res. 117 F03007

Machguth H, Haebeli W and Paul F 2012 Mass balance parameters derived from a synthetic network of mass balance glaciers J. Glaciol. 58 965–79

Marzeion B, Jarosch A H and Huffer M 2012 Past and future sea-level change from the surface mass balance of glaciers Cryosphere 6 1295–322

Oerlemans J 2001 Glaciers and Climate Change (Lisse: A Balkema Publishers)

Oerlemans J and Reichert B 2000 Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic J. Glaciol. 46 1–6

Paterson W S B 1994 The Physics of Glaciers (Amsterdam: Elsevier)

Radić V and Hock R 2011 Regionally differentiated contribution of mountain glaciers and ice caps of future sea-level rise Nature Geosci. 4 91–4
Raper S C B and Braithwaite R J 2006 Low sea level rise projections from mountain glaciers and icecaps under global warming Nature 439 311–3
Rastner P, Bolch T, Mölg N, Machguth H, Le Bris R and Paul F 2012 The first complete inventory of the local glaciers and ice caps on Greenland Cryosphere 6 1483–95
Salzmann N, Machguth H and Linsbauer A 2012 The Swiss Alpine glacier’s response to the 2 °C air temperature target Environ. Res. Lett. 7 044001
Zwinger T and Moore J C 2009 Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard Cryosphere 3 217–29