Influence of bulk dielectric polarization and void geometry upon PD transients

McAllister, Iain Wilson; Crichton - Fratrådt, George C

Published in:

Link to article, DOI:
10.1109/CEIDP.1999.804625

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Abstract

The induced charge arising from a partial discharge consists of a component associated with the actual space charge in the void, and one related to changes in the polarization of the bulk dielectric. These changes are brought about by the field produced by the space charge. The influence of the void geometry upon the polarization component of the induced charge is examined for a heterogeneous bulk dielectric system. It is demonstrated that the relative magnitude of this component may either increase or decrease, depending on the ratio of the dielectric permittivities and within which dielectric the void is located. The magnitude of this effect is also dependent upon the prolateness/oblateness of the void geometry and on the orientation of the void. This behaviour is directly reflected in terms of the Poissonian induced charge, and consequently is manifest in the magnitude of the recorded PD transient [4].

Polarization Component of the Poissonian Induced Charge

The Poissonian induced charge is that component of the induced charge which is rigidly linked to the space charge source, and which together with this source gives rise to the Basic Poisson Field [2]. The final value of the Poissonian induced charge q_i due to a partial discharge may be resolved mathematically into two components:

$$q = q_\mu + q_P$$ \hspace{1cm} (1)

The component q_μ is the induced charge directly associated with the space charge in the void; q_P represents the induced charge related to the change in dielectric polarization (δP) due to the presence of this space charge [2].

With reference to the detecting electro...
rode and the induced charge, the effect of the void wall charges arising from the partial discharge can be considered as the effect of an electric dipole of moment $\hat{\mu}$ located within the void [1]. The total Poissonian induced charge arising from this dipole is given by

$$q = -\hat{\mu} \cdot \nabla \lambda$$

where λ is the proportionality factor between the charge in the void and the induced charge on the detecting electrode. The λ function, which is a solution of the general Laplace equation [2], inherently takes into account the polarization of the dielectric.

With the proportionality factor, ϕ, it is possible to determine the component of the Poissonian induced charge related to the void space charge alone, viz.

$$q = -\hat{\mu} \cdot \nabla \phi$$

where ϕ is the polarization of the dielectric.

The ϕ function is a solution of the reduced Laplace's equation [2].

Application of these two functions allows the polarization of the dielectric to be accounted for explicitly: viz., on using (1), (2) and (3), the polarization component q_P of the Poissonian induced charge may be expressed as

$$q_P = -\hat{\mu} \cdot (\nabla \lambda - \nabla \phi)$$

The λ_0 Function

If the dimensions of the void are such that $\nabla \lambda$ may be assumed constant within the void, then we can introduce another function, λ_0. This function, which is derived for the same boundary conditions but without the void, represents the unperturbed λ function. As both λ and λ_0 are solutions of Laplace's equation, then by mathematical analogy with electrostatic fields, the relationship between the λ and λ_0 functions is given by

$$\nabla \lambda = h \nabla \lambda_0, \quad 1 \leq h \leq \varepsilon_r$$

For the type of void under consideration, the parameter h is a scalar which depends on the void geometry and the relative permittivity ε_r of the bulk medium.

Following the introduction of λ_0, q_P is given by

$$q_P = -\hat{\mu} \cdot (h \nabla \lambda_0 - \nabla \phi)$$

Heterogeneous Bulk Dielectric System

The influence of $\delta \hat{P}$ upon the induced charge will be examined for a void located in a planar heterogeneous dielectric system. With this simple geometry it is possible to illustrate the basic consequences associated with $\delta \hat{P}$.

We consider a planar electrode geometry with a two layer dielectric. If in rectangular coordinates, the electrodes are represented by $z = 0$ and $z = d$, then the dielectric interface is taken as $z = s$, with $s < d$. The permittivity of the upper dielectric is ε_2 for which $0 < z < s$. If the lower electrode is used as the detecting electrode, then the boundary conditions for the λ_0 function are $\lambda_0 = 1$ for $z = 0$ and $\lambda_0 = 0$ for $z = d$.

For this simple geometry, the $\nabla \lambda_0$ expressions can be readily shown to be given by

$$\nabla \lambda_{01} = -\varepsilon_2 \frac{\hat{\varepsilon}}{\varepsilon_1 (d - s) + \varepsilon_2 s}$$

and
\[\mathbf{\nabla} \lambda_{0} = \frac{-\mathbf{e} \cdot \mathbf{e}}{\varepsilon_{1}(d - s) + \varepsilon_{2}s} \]

(8) \[\mu = \mu \mathbf{e} \]

(11) Where \(\mathbf{e} \) is a unit vector in the positive \(z \) direction. The \(\lambda_{0} \) subscripts 1 & 2 refer to the upper and lower regions, respectively; i.e. to the different dielectric regions.

For a homogeneous medium, \(\lambda_{0} = \phi \) and thus for a planar system we have

\[\mathbf{\nabla} \lambda_{0} = \mathbf{\nabla} \phi = -\frac{\mathbf{e}}{d} \]

(9)

It may be noted that both (7) and (8) reduce to this expression for \(\varepsilon_{1} = \varepsilon_{2} \).

Hence upon undertaking the vector operations, (10) reduces to

\[\frac{q_{Pn}}{q_{n}} = 1 - \frac{d\phi/dr}{h_{n}d\lambda_{0n}/dz} \]

(12) From (12) it is clear that the polarity of \(q_{Pn}/q_{n} \) is dependent upon whether

Using (7), (8) and (9) we obtain for a void in medium 1

\[q_{P1} = 1 - \frac{\varepsilon_{1}(d - s) + \varepsilon_{2}s}{\varepsilon_{2}h_{1}d} \]

(14) and for a void in medium 2

\[q_{P2} = 1 - \frac{\varepsilon_{1}(d - s) + \varepsilon_{2}s}{\varepsilon_{1}h_{2}d} \]

(15)

Apart from permittivity and layer dimensions, both (14) and (15) contain \(h \). Thus the ratio \(q_{Pn}/q_{n} \) is also dependent upon the specific void geometry.

Induced Charge Component due to \(\mathbf{\nabla} \lambda \)

To ensure that the concept of \(h \) and (5) are valid, it will be assumed that the void is more than 10 times its greatest linear dimension from the dielectric interface, such that the \(\mathbf{\nabla} \lambda \) distribution within the void remains uniform: i.e. the existence of this interface does not perturb \(\mathbf{\nabla} \lambda \) in the void.

With respect to the component of the induced charge related to \(\mathbf{\nabla} \lambda \), we have upon combining (2), (5) and (6)

\[\frac{q_{Pn}}{q_{n}} = \frac{-\mu \cdot (h_{n} \mathbf{\nabla} \lambda_{0n} - \mathbf{\nabla} \phi)}{-\mu \cdot h_{n} \mathbf{\nabla} \lambda_{0n}} \]

(10)

where \(q_{n} \) is the total Poissonian induced charge of the heterogeneous system; the subscript \(n = 1, 2 \) indicates within which dielectric medium the void is located.

On account of the planar geometry, the resulting dipole moment will possess only a \(z \)-component. This may be directed either away from or towards the coordinate origin. However, without loss of generality, we select the positive \(z \)-direction; \(\text{viz.} \)

\[h = \frac{K \varepsilon_{r}}{1 + (K - 1) \varepsilon_{r}} \]

(16) Where \(\varepsilon_{r} \) is the relative permittivity of the relevant bulk dielectric and \(K \) is a dimensionless parameter arising
For the present void orientation, we have for an oblate spheroidal void [6]

\[K = \frac{2u^3}{(u^2 + 1) \arctan u - u} \]

(17)

The variable \(u \) is given by

\[u = \sqrt{(b/a)^2 - 1} \]

(18)

where \(a \) and \(b \) are the semi-axes of the oblate spheroid such that \(b/a > 1 \); i.e. \(a \) is the axis of rotation.

For a prolate spheroidal void \((b/a < 1)\) the associated expression for \(K \) is [6]

\[K = \frac{4v^3}{(1 - v^2) \ln \frac{1-v}{1+v} + 2v} \]

(19)

where

\[v = \sqrt{1 - \frac{(b/a)^2}{a^2}} \]

(20)

and \(a \) is again the axis of rotation. Following the evaluation of the \(K \) values the corresponding \(h \) values can be derived and thereafter inserted into (14) and (15).

The variation of \(q_{P1}/q_1 \) with \(a/b \) is shown in Fig.1 for \(\varepsilon_r = 4 \) and selected values of \(\varepsilon_2/\varepsilon_1 \). If we take the homogeneous case \((\varepsilon_2/\varepsilon_1 = 1)\) as the reference condition, then from Fig.1 it is evident that, when \(\varepsilon_2/\varepsilon_1 > 1 \), \(q_{P1} \) is increased. For the present void orientation, it is the oblate void which exhibits the greater relative effect. For \(\varepsilon_2/\varepsilon_1 < 1 \), there is a reduction in \(q_{P1} \). This can be of such a degree that the polarity of \(q_{P1} \) is reversed. In this condition, the oblate void displays the greater reductions, both in relative and absolute terms. Furthermore, a comparison of Fig.1 with the similar variation for the other principal void orientation, see [7], indicates that the present results are essentially the mirror image of those reported in [7].

From Fig.1, it becomes apparent that for a range of values of the permittivity ratio \(\varepsilon_2/\varepsilon_1 \), the value of \(q_{P1}/q_1 \) may be zero. The actual values depend on the functional form of the homogeneous curve, and are consequently subject to void shape. From (14), it can be deduced that for oblate voids these ratios lie in the range \(0.6 < \varepsilon_2/\varepsilon_1 < 1 \) for \(\varepsilon_r = 4 \) and \(s/d = 0.5 \). The value 0.6 becomes the upper limit if prolate voids are considered.

Finally, the changes in permittivity ratio required to bring about this zero condition are greater for the prolate voids than for the oblate voids. Such behaviour is the reverse of that observed with the void axis of rotation parallel to both the field direction and \(\vec{\nabla}\lambda_0 \); see [7].
Conclusions

Changes in dielectric polarization arising from a partial discharge can significantly affect the magnitude of the polarization component of the Poissonian induced charge. For a two dielectric system, this influence is dependent not only upon the ratio of the dielectric permittivities and within which medium the void is located, but also on the void geometry and its orientation. These latter parameters also affect the values of the permittivity ratios associated with a zero polarization component.

References