Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process

Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

Published in:
Optics Letters

Link to article, DOI:
10.1364/OL.38.001227

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Silicon-on-insulator (SOI) microphotonic devices are very attractive thanks to their complementary metal oxide semiconductor (CMOS)-compatible fabrication technology, their high refractive index contrast, and compact size \[1\]. Those advantages make SOI microphotonic devices promising candidates for all-optical signal processing subsystems. However, the high refractive index contrast also introduces large polarization dependency, which becomes one of the major challenges for their practical use. In particular, if the device is to be used in a subsystem deployed over an optical fiber link, the polarization state of the optical signal at its input may change randomly over time, making standard SOI microphotonic devices no longer compatible with optical processing functionalities.

To realize polarization independence, polarization diversity (Pol-D) circuits based on polarization splitter and rotator (PSR) technologies are typically used \[2–4\]. In this scheme, the input light contributions along the two orthogonal polarizations axes are first split by a polarization splitter \[5\]. After that, one of the two polarizations is rotated by 90° by a polarization rotator \[6\]. Thus, in the rest of the circuit, only one polarization needs to be processed. Many approaches have been proposed and demonstrated to realize PSRs. However, they all require a rather complex fabrication process \[6–11\]. To simplify the fabrication process, asymmetrical directional coupler (DC)-based PSRs have been recently proposed and demonstrated \[12–14\]. One of the main practical issues with many PSR designs is their limited fabrication tolerance, which makes them impractical for high-yield production. The best reported fabrication tolerance of \(\sim 14 \) nm for a DC-based PSR was recently obtained using a tapered DC design \[15\].

In this Letter we propose and demonstrate a PSR built on the SOI platform. In this device, an adiabatically tapered waveguide first converts the TM\(_0\) to the TE\(_0\) mode, while also preserving the TE\(_0\) mode. A 2 × 2 multimode interference (MMI) coupler, which is well-known for its large fabrication tolerance \[16\] and has been utilized for wide bandwidth polarization splitting/combining \[17\], is introduced afterward to effectively couple the TE\(_o\) and TE\(_1\) modes at the end of the TM\(_0\)–TE\(_1\) mode converter to two distinct TE\(_0\) outputs. Simulation results show a large fabrication tolerance of 63 nm thanks to the use of the MMI. A low insertion loss better than 2.5 dB, with minimum insertion loss of only 0.6 dB and polarization crosstalk lower than –12 dB over a wide bandwidth of 100 nm, is demonstrated experimentally, together with a large fabrication tolerance better than 50 nm.

The principle of the proposed PSR is schematically depicted in Fig. 1(a). Light is first injected into a tapered waveguide and then split into two beams by a Y-splitter. Before being injected into the 2 × 2 MMI, an extra phase difference of \(\pi / 2 \) is introduced between the two beams. In case of the TE\(_0\) input, the mode will be preserved during the adiabatic taper and split into two TE\(_0\) beams with the same phase. Thus, at the MMI input, the two beams will have a \(\pi / 2 \) phase difference. By properly designing the MMI, light will output from arm 1 on the TE\(_0\) mode with little crosstalk in arm 2 [Fig. 1(b)]. On the other hand, in case of the TM\(_0\) input, the light is converted to the TE\(_1\) mode during the adiabatic tapering \[14\] and split into two TE\(_0\) beams with \(\pi \) phase difference. Thus, at the MMI input, the two beams will have a \(\sim \pi / 2 \) phase difference, and light will consequently output from arm 2 on the TE\(_0\) mode.

![Fig. 1](Color online) (a) Schematic structure of the proposed PSR. TE\(_0\) (b) and TM\(_0\) (c) light are input to the PSR, and output from arm 1 and 2, respectively, on the TE\(_0\) mode.
with little crosstalk in arm 1 [Fig. 1(c)]. To achieve an efficient TM\textsubscript{0}–TM\textsubscript{1} polarization conversion, a material that is different from the buffer layer (silicon oxide) should be applied as top-cladding layer [14]. In our design, air is employed as top cladding material. To decrease the tapering length, the TM\textsubscript{0}–TM\textsubscript{1} converter is divided into three sections, as shown in Fig. 1(a). The first section \(L_1 \) is from input single mode silicon waveguide \((w_1 = 450 \text{ nm})\) to \(w_2 = 650 \text{ nm}\). Since in this section there is no mode conversion, a short tapering length of 10 \(\mu \text{m} \) is employed. Considering the TM\textsubscript{0} and TE\textsubscript{1} modes are hybridized around \(w = 700 \text{ nm}\), as shown in Fig. 2, the second tapering section \(L_2 \) is from \(w_2 \) to \(w_3 = 750 \text{ nm} \) with a tapering length as long as 120 \(\mu \text{m} \), which can guarantee an efficient TM\textsubscript{0}–TM\textsubscript{1} conversion, as shown in the inset of Fig. 3(a). The third section \(L_3 \) is from \(w_3 \) to \(w_4 = 800 \text{ nm} \) with tapering length of 10 \(\mu \text{m} \). The output end of the TM\textsubscript{0}–TM\textsubscript{1} converter is then split to two arms with widths of 400 nm and connected to the 2 × 2 MMI through tapering to \(w_5 = 700 \text{ nm} \) to improve the fabrication tolerance [16]. With a calculated effective index of 2.234, the two arms are designed to have a length difference of 173 nm to introduce the required \(\pi/2 \) phase difference. The 2 × 2 MMI is designed to be of the symmetric type (excited at \(w_{\text{MMI}/4} \)) with width of \(w_{\text{MMI}} = 2 \mu \text{m} \) and length of \(L_{\text{MMI}} = 13.7 \mu \text{m} \) based on three-dimensional finite difference time domain (3D FDTD) simulations. A restricted type MMI (excited at \(w_{\text{MMI}/6} \)), which could efficiently decrease \(L_{\text{MMI}} \), could also be used. In this case, \(w_{\text{MMI}} \) should be larger in order to sufficiently separate the two output waveguides.

In reality, a size deviation \(\Delta w_{\text{device}} \) may be introduced by the fabrication process for the whole device. Such a size deviation will influence the TM\textsubscript{0}–TM\textsubscript{1} mode conversion in the adiabatic taper section and introduce a phase deviation from \(\pi/2 \) between the two arms before the MMI, which further influences the whole performance of the device. Figure 3(a) shows the TM\textsubscript{0}–TM\textsubscript{1} conversion efficiency for different width deviations of the adiabatic taper calculated using the eigenmode expansion method [18]. A large tolerance of \(\pm 40 \text{ nm} \) is expected for the adiabatic taper to guarantee a high TM\textsubscript{0}–TM\textsubscript{1} conversion efficiency above 99%. To investigate the impact of a width deviation of the two arms before the MMI, the width deviation is first converted to an effective index deviation according to Fig. 2, then to a phase deviation \(\Delta \phi \) for the two beams. 3D FDTD simulations are used to investigate the tolerance. In the simulations, two beams of light with phase difference of \(\pi/2 + \Delta \phi \) are injected into the MMI, and the two output powers are calculated as shown in the insets of Fig. 3(b). A large tolerance of \(\pm 100 \text{ nm} \) is obtained while the crosstalk is kept below 15 dB. Finally, for the MMI, in a Rayleigh range, a length tolerance can be estimated as \(\Delta L_{\text{MMI}} = \pi n_r w_{\text{MMI}}/\lambda_0 \) [16], where \(\lambda_0 \) is defined as the input Gaussian beam waist, \(n_r \) is the material refractive index, and \(\lambda_0 \) is the operating wavelength. The corresponding width tolerance and operation bandwidth can be calculated as \(\Delta w_{\text{MMI}} = w_{\text{MMI}}\Delta L_{\text{MMI}}/2L_{\text{MMI}} \) and \(\Delta \lambda_0 = \lambda_0 \Delta L_{\text{MMI}}/L_{\text{MMI}} \), respectively [16]. With \(\lambda_0 = 700 \text{ nm} \), \(n_r = 3.476 \), and \(\lambda_0 = 1550 \text{ nm} \), a length tolerance \(\Delta L_{\text{MMI}} \) of 860 nm, a width tolerance \(\Delta w_{\text{MMI}} \) of 63 nm, and a bandwidth \(\Delta \lambda_0 \) of 98 nm are expected. Thus, an overall size deviation tolerance of \(\Delta w_{\text{device}} = 63 \text{ nm} \) is expected for the whole device with a bandwidth of 98 nm.

The device was fabricated on a SOI wafer (top silicon thickness 250 nm, buried silicon dioxide 3 \(\mu \text{m} \)) by a single step of E-beam lithography (JEOL JBX-9300FS) and inductively coupled plasma reactive ion etching (STS Advanced Silicon Etcher). Figure 4(a) shows the fabricated device with design parameters as introduced previously.

The total length of the device, including the 140 \(\mu \text{m} \) long adiabatic taper-based TM\textsubscript{0}–TM\textsubscript{1} mode converter, is 190 \(\mu \text{m} \). Note that the smallest feature size of the device is the inner corner of the Y-splitter, enabling our scheme to be fabricated with other methods [19]. Figure 4(b)
conversion efficiencies are obtained over a better than 50 nm device size deviation, in good agreement with the simulations.

In conclusion, we have proposed and demonstrated a PSR built on the SOI platform, which is fabricated by simple processing. A low insertion loss better than 2.5 dB with a minimum insertion loss of 0.6 dB and polarization crosstalk lower than −12 dB over a wide bandwidth of 100 nm are demonstrated together with a large fabrication tolerance better than 50 nm.

References