Functionalized Ormosil Scaffolds Processed by Direct Laser Polymerization for Application in Tissue Engineering

Matei, A.; Schou, Jørgen; Canulescu, Stela; Zamfirescu, M.; Albu, C.; Mitu, B.; Buruiana, E. C.; Buruiana, T.; Mustacioso, C.; Petcu, I.; Dinescu, M.

Publication date:
2012

Citation (APA):
Functionalized Ormosil Scaffolds Processed by Direct Laser Polymerization for Application in Tissue Engineering

A. Matei¹, ², J. Schou³, S. Canulescu³, M. Zamfirescu², C. Albu², B. Mitu², E.C. Buruiana¹, T. Buruiana¹, C. Mustaciosu⁴, I. Petcu⁴, M. Dinescu²

¹Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda 41A, 6600 Iasi, Romania
²National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, 77125 Bucharest-Magurele, Romania
³DTU Fotonik, Risø Campus, Technical University of Denmark, DK-4000 Roskilde, Denmark
⁴Department of Environmental and Life Physics, National Institute for Physics and Nuclear Engineering ‘Horia Hulubei’, Bucharest, Romania

Abstract

The N,N’-(methacryloyloxyethyl triethoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate for applications in tissue engineering was synthesized and afterwards polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for further applications in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by using two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation. The functionalized structures were tested in L929 mouse fibroblasts culture and the cells morphology, proliferation, and attachment were analyzed.