Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

Schrittwieser, R.; Mehlmann, F.; Naulin, Volker; Juul Rasmussen, Jens; Müller, H.W.; Ionita, C.; Nielsen, Anders Henry; Vianello, N.; Rohde, V.

Publication date:
2012

Citation (APA):
Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

R. Schrittwieser¹, F. Mehlmann¹, V. Naulin², J.J. Rasmussen², H.W. Müller³, C. Ionita¹, A.H. Nielsen², N. Vianello⁴, V. Rohde³, ASDEX Upgrade Team³

¹Inst. Ion Phys. & Appl. Physics, EURATOM-ÖAW Association, University Innsbruck, Austria
²Association EURATOM – DTU, Technical University of Denmark, Department of Physics, DTU Risø Campus, Roskilde, Denmark
³Max-Planck-Institute for Plasma Physics, EURATOM Association, Garching, Germany
⁴Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy

Turbulent transport and related parameters were investigated in the SOL of ASDEX Upgrade (AUG) in L-mode and H-mode discharges. The probe head [1] carries six probe pins of 1 mm diameter and 2 mm length. One pin is radially protruding by 3 mm. With this array the poloidal and radial electric field components \(E_{\theta,r} \), respectively, and the ion density \(n \) could be determined simultaneously. From these data in particular the radial flux of poloidal momentum, \(M_r = n v_r v_{\theta} \), was derived (\(B_{\phi} \) is the toroidal magnetic field). The density \(n \) and the radial and poloidal velocity components, \(v_r, v_{\theta} \), respectively, are defined as \(X = X_0 + X_f \) (i.e. the stationary and the fluctuating components). Thereby the radial flux of poloidal momentum splits into various contributions [2,3] of which three are of interest to us: (i) Reynolds stress \(\mathcal{R}_E = n_0 v_r v_{\theta} \), (ii) convective momentum flux term \(v_{0,0} \Gamma = v_{0,0} n v_r v_{\theta} \), and (iii) triple fluctuating term \(n_0 v_r v_{\theta} \). Here we discuss the probability density functions (PDF) of these quantities, normalized to their standard deviations, for L-mode shot #23157 during its diverted phase and H-mode shot #23163. In case of H-mode discharges, \(M_r \) is calculated separately for ELM-intervals and inter-ELM intervals, i.e., in between type-I ELMs. Whereas in H-mode due to neutral beam injection (NBI) there is an external source for toroidal angular momentum, in the L-mode discharge there is only intrinsic rotation. In both cases we see radial flux of poloidal momentum but with opposite signs.

References