Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox

Beck, Scott A.; Feist, Adam; Mo, M. L.; Hannum, G.; Palsson, B. O.; Herrgard, Markus

Published in:
Nature Protocols (Online)

Link to article, DOI:
10.1038/nprot.2007.99

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox

Scott A Becker¹, Adam M Feist¹, Monica L Mo¹, Gregory Hannum¹, Bernhard Ø Palsson¹ & Markus J Herrgard¹

The manner in which microorganisms utilize their metabolic processes can be predicted using constraint-based analysis of genome-scale metabolic networks. Herein, we present the constraint-based reconstruction and analysis toolbox, a software package running in the Matlab environment, which allows for quantitative prediction of cellular behavior using a constraint-based approach. Specifically, this software allows predictive computations of both steady-state and dynamic optimal growth behavior, the effects of gene deletions, comprehensive robustness analyses, sampling the range of possible cellular metabolic states and the determination of network modules. Functions enabling these calculations are included in the toolbox, allowing a user to input a genome-scale metabolic model distributed in Systems Biology Markup Language format and perform these calculations with just a few lines of code. The results are predictions of cellular behavior that have been verified as accurate in a growing body of research. After software installation,
calculation time is minimal, allowing the user to focus on the interpretation of the computational results.

To read this story in full you will need to login or make a payment (see right).