Characterization and biodegradation of two technical mixtures of side-chain fluorinated acryl copolymers

Eschauzier, C.; Trier, Xenia; Bengtström, Linda; Frömel, T.; de Voogt, P.; Knepper, T. P.

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Characterization and biodegradation of two technical mixtures of side-chain fluorinated acryl copolymers

Christian Eschauzier1,2,3, Xenia Trier4, Linda Bengtström5, Tobias Frömel3, Pim de Voogt2,1, Thomas P. Knepper3

1 KWR Watercycle Research Institute, P.O.Box 1072, 3430 BB Nieuwegein, Netherlands
2 Earth Surface Sciences, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O.Box 94248, 1090GE Amsterdam, Netherlands
3 Hochschule Fresenius, Limburger Straße 2, 6510 Idstein, Germany
4 National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, 2860 Stege, Denmark

Christian.eschauzier@kwrwater.nl, xttr@food.dtu.dk

Introduction

- PFAA sources to the environment: direct & indirect.
- Biodegradation of side-chain fluorinated acryl copolymers (fluorotelomer alcohols (FTOH) based), leaching of residual perfluoroalkylacids (PFAA) and biodegradation of residual monomers/oligomers as sources of PFAA?
- Large uncertainty of the indirect sources for fluorotelomer based products 6-160 t (Prevedouros, 2006) vs. amount of produced FTOH based side-chain fluorinated copolymer (4000 to 5200 t/year for 1995-2004)
- Both side-chain fluorinated acryl copolymers are used for coating of food paper and board packaging

Aim of the study: Characterize two fluorinated acryl copolymers and their PFAA precursor potential

Materials & Methods

- Two technical mixtures of side-chain fluorinated acryl copolymers were obtained:
 - Copolymer 1: cationic, solvated in methanol
 - Copolymer 2: non-ionic, solvated in water
- 10% solutions ultracentrifuged: 3 kDa mass cutoff analyzed
- Biodegradation experiments at 100 mg/L
- Innoculum: wastewater treatment plant effluent
- Instrumentation:
 - UHPLC-ESI–QqQ (Waters Quatro Ultima)
 - UHPLC-ESI+/–QTOF (Bruker, MicroTOF)
 - 19F-NMR (500 MHz Varian Unity Inova)

Results & Discussion

Side-chain fluorinated acryl copolymer 1
- Large amount of residuals FTOH and PFAA present in fluoropolymer mixture. FTOH: C6 (2%), C8 (45%), C10 (40%) and C12 (13%).
- UHPLC-ESI+ microQTOF scan shows homologues series separated by Δm/z=100 (CF2CF2), probably from fluorotelomer acrylates (FTAc)

Side-chain fluorinated acryl copolymer 2
- 1‰ of residual FTOH and minor amounts of PFAA present in fluoropolymer mixture: FTOH: C6 (90%), C8 (5%) and C10 (5%).
- Degradation of a fluorinated acryl copolymer
- First results on biodegradation experiment of residual 6:2 FTOH or C6 based side-chain fluorinated acryl copolymer technical mixture

Conclusions

- FTOH and PFAA residuals were present in both mixtures.
- Homologues series of “unknown” fluorinated compounds were found in fluorinated copolymer 1 by accurate MS (LC-QTOF MS)
- Perfluorinated side chains were observed in copolymer 1 by 19F NMR
- Side-chain fluorinated acryl copolymer 2 had broad peaks in the 19F NMR spectrum, possibly due to micellization.
- Degradation of FTOH residuals or side-chain fluorinated acryl copolymers are sources of PFAA in food packaging and in the environment
- More knowledge on production volumes of side chain fluoropolymers and individual brands is required for a thorough assessment of the precursor potential of side-chain fluorinated acryl copolymers

Figure 1: 10% polymer solutions before centrifugation
Figure 2: Biodegradation setup

The financial support of the German UbA precursor project, the Danish Veterinary and Food Administration and from a Marie Curie grant are gratefully acknowledged.