Detection of PRRSV in 218 field samples using six molecular methods: What we are looking for?

Toplak, Ivan; Štukelj, Marina; Gracieux, Patrice; Gyula, Balka; Larsen, Lars Erik; Rauh, Rolf

Published in:
Proceedings of EuroPRRS2012

Publication date:
2012

Citation (APA):
DETECTION OF PRRSV IN 218 FIELD SAMPLES USING SIX MOLECULAR METHODS: WHAT WE ARE LOOKING FOR?

Ivan Toplak1, Marina Štukelj2, Patrice Gracieux3, Balka Gyula4, Lars Larsen5, Rolf Rauh6

1University of Ljubljana, Veterinary Faculty, Gerbičeva 60, SI-1115 Ljubljana, Slovenia (e-mail: ivan.toplak@vf.uni-lj.si)
2University of Ljubljana, Veterinary Faculty, Cesta v mestni log 47, SI-1115 Ljubljana, Slovenia
3ADIAGENE, 38 rue de Paris, 22000 Saint Brieuc, France
4Faculty of Veterinary Science, István u. 2, H-1078 Budapest, Hungary
5National veterinary institute, Technical University of Denmark, Bülowsvej 27, Copenhagen, Denmark
6Tetracore Inc, 9901 Belward Campus Drive, Suite 300, Rockville, MD, 20850, USA

Objectives
The purpose of this study was to determine the sensitivity and the specificity of six molecular methods used for the detection of porcine reproductive and respiratory syndrome virus (PRRSV).

Methods
218 field samples (serum, tissues) were collected between 2009 and 2011 from 50 PRRSV positive and 45 negative pig herds from Slovenia. Total viral RNA was extracted from original samples and stored in aliquots at -70 °C until analysis. RT-PCR and direct sequencing of positive samples was performed as described previously (Toplak et al., 2012). All field samples were analyzed with five commercial real-time RT-PCR kits (named as kit A to E) according to the instructions of producer.

Results
According to determined 258 nucleotides long sequences (ORF7) 102 PRRSV samples belong to Type I (identification of 12 different lineages of EU subtype 1 (a=1, b=8, c=1, d=1, e=61, f=8, g=2, h=4, i=3, j=4, k=1, m=8) with 85.7-93.8 % nucleotide identity between lineages and four samples belong to Type II. In total, 138 PRRSV positive samples were detected with broad range of PRRSV RNA in samples. The highest sensitivity was observed with kit E (96.3%) and with kit B (94.5%), followed by conventional RT-PCR (87.8%) and kit D (82.1%), while the lowest sensitivity was observed with kit A (55.3%) and kit C (53.8%). Reduced sensitivity was directly related to the genetic lineages.

Discussion and conclusion
The study showed that the performance of commercial RT-PCR assays are highly dependent on the genetic make-up of the target viruses and confirm findings of a previous study where we showed some commercial PCR kits failed to detect specific genetic linkages of PRRSV. Thus, these finding emphasise that it is cricial that the manifactors of l diagnostic PCR kits (conventional and real-time) Continuesly follow the genetic evaluation of especially Type I PRRSV subtype viruses and regularly update their primer sequences.

Keywords: PRRSV, diagnosis, real-time RT-PCR, sensitivity, field samples