Analysis of migration of polyfluorinated compounds from paper packaging into food matrices

Bengtström, Linda; von Barner, Mette Regitze; Pedersen, Gitte Alsing; Granby, Kit; Trier, Xenia

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Analysis of migration of polyfluorinated compounds from paper packaging into food matrices

Linda Bengtström², Mette Regitze von Barner¹, Gitte Alsing-Pedersen¹, Kit Granby¹, Xenia Trier¹

¹) Technical University of Denmark, The National Food Institute, Mørkhøj Bygade, DK-2860, Søborg, Denmark
Corresponding author: lben@food.dtu.dk

Introduction. Polyfluorinated compounds are extensively utilized as grease- and water repellants in paper- and cardboard used as food contact materials. These bioaccumulative substances are able to migrate from the food contact material into foods. In this study, we compare two extraction methods for polyfluorinated compounds in food samples; liquid-liquid extraction by trifluoroethanol and methanol extraction/saponification/weak ion exchange solid phase clean-up.

Materials and methods. Two food products, popcorn and flour, were extracted with LLE [1] and with SPE [2] Extraction scheme for the SPE method is presented in Figure 1. LLE was performed by a two-phase system where 0.2 g food product was extracted by 5 mL of isooctane and 2 mL 80:20 (v:v) trifluoroethanol and water. Products were simulated for storage and usage and pre-treated according to Table 1.

The compounds analysed were polyfluorinated mono- and di-PAPs (mono-PAPs, dPAPs, and S-dPAPs). The analysis was performed by HPLC-MS-MS for the SPE method or by UHPLC-MS-MS for the LLE technique. GC labelled standards were used as internal standards.

Table 1. Pre-analysis treatment of food products and food simulants.

<table>
<thead>
<tr>
<th>Food product</th>
<th>Storage simulation</th>
<th>Usage simulation</th>
<th>Pre-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popcorn</td>
<td>NA</td>
<td>Popped</td>
<td>Saponificated*</td>
</tr>
<tr>
<td>Fluor</td>
<td>40 °C, 10 days</td>
<td>NA</td>
<td>Saponificated*</td>
</tr>
</tbody>
</table>

1-2 g food sample 18 mL methanol Shaken overnight

In Figure 1. Extraction scheme for the methanol extraction/saponification/weak ion exchange solid phase clean-up. The SPE clean-up were performed according to the manufacturers protocol.

Results and Discussion

Since 2010, it is recommended by the European Council, to monitor mono- and d-PAPs in food products. We have compared the two most common extraction strategies for per- and polyfluorinated compounds used for food products.

Test for the extraction efficiency of migrated fluorinated compounds into food products:

• The trifluoroethanol extraction method revealed high recovery for for mono-PAPs and di-PAPs. This method included internal standards of 6.2:1 mono-PAPs, 8.2:1 mono-PAPs, 6.2:1 di-PAPs and 8.2:1 di-PAPs. The recoveries of 4.2:1 mono-PAPs and 4.2:2:2 di-PAPs are insufficient, probably due to degradation of these compounds in the non-commercial standard. All other standards used were commercially obtained.

• On the contrary the SPE method only included 6.2:1 di-PAPs as internal standard. The recovery was fair for the 6.2:1 di-PAPs but it is evident that the accuracy is not adequate for some of the other compounds. However, omitting the internal standard resulted in too low recoveries. Including more internal standards is essential for better accuracy and precision. Therefore, further analysis is necessary to validate this method.

Conclusion

The liquid-liquid extraction provides a simple, and efficient, method for the extraction of mono- and d-PAPs in food matrices relevant for surveying potential migrating polyfluorinated compounds from food contact materials. The SPE method, which have good recoveries for PFCs (data not shown), had relatively poor accuracy. This study further emphasizes the necessity for using compound specific internal standards, preferable for each analyte.
