Effect of Crystal Structure and Defect Diffusion on Damage Accumulation in Solids under Irradiation

Singh, Bachu Narain; Golubov, Stanislav

Publication date:
2012

Citation (APA):
Effect of Crystal Structure and Defect Diffusion on Damage Accumulation in Solids under Irradiation

Bachu Singh
Department of Energy Conversion & Storage
Technical University of Denmark – DTU, Roskilde, Denmark

Stanislav Golubov
Materials Science and Technology Division
ORNL, Oak Ridge, USA

November 28
Main Objective

Discuss the differences in damage accumulation in BCC, FCC and HCP metals

Outline

- Brief Introduction
- Earlier RD Model (FP3DM)
- Modern RD Model (PBM)
- Damage accumulation in cubic and HCP metals in the framework of PBM
Mechanical properties change during irradiation

- Mechanical properties of material depends on microstructure
- Evolution of microstructure depends on temperature, mechanical treatment and radiation damage
- **Radiation damage**: production of atomic displacement, i.e. production of site/anti-site types of defects: vacancies, self-interstitial atoms (SIAs) and their clusters
- **Consequence of defect production**: accumulation of SIAs in the form of dislocation loops, tetrahedra, voids and development of dislocation network

Radiation may also lead to
- Production of variety of impurities, e.g. He, H, etc.
- Nucleation and growth of secondary phase precipitates
- Radiation-induced segregation etc.

These phenomena are out of scope of this presentation

Main Focus: Accumulation of defects in the form of dislocation loops, voids and dislocation
Radiation effects on properties

- **Swelling**: volume increase
- **Growth**: inelastic deformation at constant volume without stress
- **Creep**: inelastic deformation at constant volume under stress
- **Hardening, Embrittlement**: yield stress increase, plasticity decrease

Maximum scale in damage accumulation:

- **swelling**: ~1.0%/dpa: (~one FP survives out of 100)
- **radiation growth**: ~0.1%/dpa: (~one FP survives out of 1000)

Swelling, creep, hardening and embrittlement are common phenomena for BCC, FCC and HCP crystals

There are remarkable differences in how phenomena proceed in materials with different crystal structures
Differences in damage accumulation in cubic and HCP crystal

- **BCC**: swelling rate is small and not sensitive to temperature; void lattice formation is frequent and perfect; raft formation

- **FCC**: swelling rate is high, sensitive to temperatures; void lattice is not frequent and not perfect; SFT formation

Void lattice is not observed after 1 MeV electron irradiation!

- **HCP**: Radiation growth is a unique phenomena among metallic materials; alignment of voids and vacancy loops along basal planes instead of void lattice

Alignment of voids is observed after 1 MeV electron irradiation!

Although these facts have been known over the last 40 years, they have not been consistently explained.
Basic reasons for luck of understanding

Main assumptions of earlier RD model (PF3DM/SRT)

1. Primary damage, regardless of nature and energy of particles, consists of single vacancies and SIAs
2. Both types of defects diffuse three-dimensionally
3. Preferential absorption of single SIAs by edge dislocations, i.e. dislocation bias, is considered to be the main driving force for damage accumulation

The model, which is still in use for all types of irradiation, is correct if all three assumptions are valid, for example, it may work for irradiation with 1 MeV electrons.

Experiment, MD simulations and theory have revealed that:

All three assumptions are wrong in the case of neutron and heavy ion irradiation.

The main driving force for damage accumulation is the vacancy and SIA type of defects by dislocations irrespective of the difference in absorption.
Void lattice in neutron-irradiated Niobium

Void lattice has the same symmetry and orientation as the host lattice (BCC in BCC metals and so on)

B. A. Loomis et al, J. Nucl. Mater. 68 (1977) 19
Grain boundary effect in Al irradiated with neutrons

K. Farrell et al., Albany 1971, p.376

Foreman, Singh, Horsewell

Length scale is orders of magnitude larger mean distance between voids
Spatial correlations between voids and second-phase particles

η-phase G-phase Laves Phosphide

Pedraza & Maziasz (1987)

Space distribution of voids is not random
Alignment of Voids and Vacancy Loops Along Basal Planes in HCP Metals

Voids in Mg

Vacancy loops in Zr

Common point in all observations:
Non-random space distribution of vacancy type of defects
Primary damage under neutron irradiation

The scale of effects is weakly dependent on the type of lattice and material composition since $E_{PKA} \gg E_{cohesive}$

- Survival fraction is ~10 times less than that predicted by NRT standard
- Large fraction of defects survived if form of clusters

Temperature dependent fraction of defects surviving after cooling down phase of cascades in copper irradiated with neutrons.

Fraction of SIAs in clusters after cooling down phase of cascades as a function of PKA energy.
Production Bias Model

Key assumptions of the model:

1. Defect production depends on particle energy and consists of PDs and PD clusters for the cases of neutron and ion irradiations (multi-displacement cascades).

2. Diffusion of interstitial types of defects, both single SIAs and SIA clusters, could be three-, two- and one-dimensional depending on the crystal structure where as it is three dimensional for vacancies.

3. Absorption of defects by dislocations is determined by properties of migrating defects and dislocation structure.

The key to understanding the difference in damage accumulation:

The second and third properties are different in different crystal structures.
Basic equations of PBM

PDs (3-D diffusion)

$$
\frac{dC_v}{dt} = G_v - \mu_R D_i C_i D_v - D_v C_v k_v^2, \\
\frac{dC_i}{dt} = G_i - \mu_R D_i C_i D_v - D_i C_i k_i^2,
$$

2\text{nd order reaction kinetics}

SIA clusters (1-D diffusion)

$$
\frac{dC_{cl}^m}{dt} = G_{cl}^m - D_{cl} C_{cl}^m \left(k_{cl}^m\right)^2, \quad (m = 1, 2...m_{\text{max}}).
$$

3\text{rd order reaction kinetics}

Sink strengths

$$
k_{v,i}^2 = 4\pi R_v N_v + Z_{v,i} \rho, \\
\left(k_{to}^{cl}\right)^2 = 2\pi R_v^2 N_v \left(\pi R_v^2 N_v + \pi \rho R_\rho / 2\right)^{1/2}.
$$

Defect generation rates

$$
G_v = G_{NRT} (1 - \varepsilon_r), \\
G_i = G_{NRT} (1 - \varepsilon_r) \left(1 - \varepsilon_i^g\right), \\
G_{cl}^m = \frac{1}{\langle x_i^g \rangle} G_{NRT} (1 - \varepsilon_r) \varepsilon_i^g.
$$

Sink strengths

- R_v, N_v – mean radius and density of voids,
- $Z_{v,i}, \rho$ – dislocation efficiency and density,
- R_ρ – dislocation capture efficiency for SIA clusters.

Defect generation rates

- ε_r – fraction of defects recombined in cascades
- ε_i^g – fraction of SIAs in glissile clusters

$$
G_v, G_i \neq G_{NRT}, \\
G_v \neq G_i.
$$
Swelling in cubic crystals in the framework of PBM

\[
\frac{dS}{d\phi_{NRT}} = (1 - \varepsilon_r) (1 - \varepsilon_i^g) p_d \frac{4\pi R N Z_{v\rho}}{(4\pi R N + Z_{i\rho})^2} + (1 - \varepsilon_r) \varepsilon_i^g \left[\frac{4\pi R N}{4\pi R N + Z_{v\rho}} - \frac{\pi R^2 N}{\pi R^2 N + \pi \rho R_{\rho} / 2} \right].
\]

where \(p_d \) is the dislocation bias.

Since the first term is much smaller than that of the second one, the fraction of SIAs in SIA glissile clusters, i.e. the product

\[
\chi = (1 - \varepsilon_r) \varepsilon_i^g,
\]

is the critical parameter of PBM.
Dumbbell configuration of SIAs is the most stable, diffuse 3-D

SIA clusters have a form of crowdion bundle, diffuse 1-D along close park (110) directions

Edge dislocations are extended due to low stacking fault energy (SFE)

Absorption efficiency of dislocations for PDs is less than that of perfect dislocations

Reaction kinetics is a mix of 3-D and 1-D thus

\[
\frac{dS}{d\phi} \approx \chi \left[\frac{4\pi RN}{4\pi RN + Z_v \rho} - \frac{\pi R^2 N}{\pi R^2 N + \pi \rho R_{\rho} / 2} \right].
\]

\[
\left(\frac{dS}{d\phi} \right)_{\text{max}} \approx \frac{\chi}{2}.
\]
PKA Energy Effect in Copper Irradiated with Different Particles

Irradiations:
- 2.5 MeV electrons (PKA=0.05 keV)
- 3 MeV protons (1 keV)
- Fission neutrons (60 keV)

Irradiation conditions:
\[G_{\text{NRT}} = 10^{-8} \text{ dpa/sec} \]
\[T = 520 \text{ K} \]

in all three cases!

The only experiment with such low generation rates at electron and proton irradiations.

50 times higher swelling in case of neutrons compared to electrons at defect production rate 10 times smaller!

Cascade parameters adjusted for neutron irradiation:
\[
(1 - \varepsilon_r) = 0.1, \\
\varepsilon_i^g = 0.2, \\
\chi = 0.02
\]

Steady State Swelling in Neutron Irradiated Stainless Steel

Maximum swelling rate:

\[\frac{dS}{d\phi^{\text{NRT}}} \approx \frac{\chi}{2} \approx 1\% / \text{dpa} \]

Swelling rate of 1%/dpa found in variety of stainless steel is explained for the first time

Damage Accumulation in BCC Crystals

Ab-initio results for SIA stability in BCC metals

Crowdion SIA configuration is the most stable in all metals except Fe.
Critical properties and damage accumulation in BCC metals

- Crowdion configuration of SIAs is the most stable, diffuse 1-D
- SIA clusters have a form of crowdion bundle, diffuse 1-D along close packed (111) directions
- Edge dislocations are perfect due to high stacking fault energy

Reaction kinetics is pure 1-D

\[
\frac{dS}{d\phi} = (1 - \varepsilon_r) \left[\frac{4\pi RN}{4\pi RN + Z\sqrt{\rho}} - \frac{\pi R^2 N}{\pi R^2 N + \pi \rho R_d / 2} \right].
\]

\[\varepsilon_i^g = 1, \quad \chi = (1 - \varepsilon_r) = 0.1\]

\[
\left(\frac{dS}{d\phi} \right)_{\text{max}} \approx \frac{1}{2} (1 - \varepsilon_r) \approx 5\% / \text{dpa}.
\]

Potential for damage accumulation is remarkably larger than that of FCC, corresponding to void nucleation and ordering.
Swelling in Neutron Irradiated V-5Fe

Swelling ~100% at 30 dpa thus swelling rate ~2%/dpa

Maximal swelling rate ever found!

Higher potential for damage accumulation than that in FCC, correspondingly for void nucleation and ordering
Radiation Growth in Zirconium, I

- Expansion in prismatic directions (a-directions)
- Contraction along perpendicular to basal ones (c-direction)
- Volume conservation

Extreme case: radiation growth in Zr-7%Pt binary alloy

unirradiated

irradiated (strain ~100%)
Radiation Growth in Zirconium, II

- High strain rate at small doses followed by strain saturation
- Breakaway growth (why and to where it goes?)
- Coexistence of about the same sizes vacancy and SIA type a-loops
- Negative a-strain

Observations, which have never been explained:

- No estimation has been done for the maximal strain rate
The first radiation growth model was developed at 1962

Recent reviews:

‘..the basic physical parameters that would be needed to construct reliable mechanistic models to predict the deformation of even a pure Zr single crystal are not known ... We therefore still rely a phenomenological approach.’

‘... understanding of the basic creep mechanisms in anisotropic materials like zirconium alloys is still not strong enough to be truly predictive.’ ‘... Today, most models are empirical in nature, ... ‘

The phenomenon has not been understood for the last ~ 50 years!
Several stable configurations of SIAs, diffuse predominant 2-D along basal planes

C/A ratio is less than ideal

Edge dislocations of basal and prismatic types are largely different due to difference in their Burgers vectors

SIA clusters have a form of crowdion bundle, diffuse 1-D along close park directions along basal planes

Reaction kinetics is mix 2-D/3-D with highly anisotropic 1-D SIA cluster diffusion
Radiation Growth in Framework of PBM

Strain rates in Deckart coordinate system where \(x \) is parallel to \(a_1 \) prismatic direction and \(z \) is parallel to \(c \) direction:

\[
\frac{d\varepsilon_x}{d\phi} = \chi \left(\frac{1}{2} - \frac{\rho_x}{\rho} \right), \quad \chi = (1 - \varepsilon_r) \varepsilon_i^g \\
\frac{d\varepsilon_y}{d\phi} = \chi \left(\frac{1}{2} - \frac{\rho_y}{\rho} \right), \\
\frac{d\varepsilon_z}{d\phi} = -\chi \frac{\rho_z}{\rho},
\]

where \(\rho_x, \rho_y, \rho_z \) are density of dislocation with Burgers vectors parallel to \(x, y, \) and \(z \) directions and \(\rho \) is total dislocation density.

Equations above provide explanations of all striking observations, including estimates of the maximum strain rate.
Dose Dependence of RG Strains Predicted by the Model

RG in annealed Zr

Impact of cold work

- Graphs showing dose dependence and growth strain with neutron fluence.
- Diagrams illustrating the impact of cold work on strain.

[$\rho_a^g / \rho_d^g = 5$]

[$9 \times 10^{-4} (\rho_a^g / \rho_d^g = 10)$]

[1.7×10^{-3}]
Summary

- Explanation of radiation growth by PBM originally developed for cubic crystals provides strong validation of the model.
- For the first time, radiation damage in metals with all three crystal structures are explained in the framework of a single model.
End of presentation,

Thanks for your attention