On the potential load reduction on wind turbines by flap control using measurements of local inflow to the blades

Aagaard Madsen, Helge; Fischer, Andreas; Larsen, Torben J.; Bak, Christian

Publication date: 2012

ON THE POTENTIAL LOAD REDUCTION ON WIND TURBINES BY FLAP CONTROL USING MEASUREMENTS OF LOCAL INFLOW TO THE BLADES

Helge Aa. Madsen
Andreas Fischer
Torben Juul Larsen
Christian Bak

DTU Wind Energy
Technical University of Denmark
P.O. 49, DK-4000 Roskilde, Denmark.

hma@dtu.dk
Outline

- Background/motivation
- Approach used in the study
- Results
- Summary
Potential load reductions by flap control?
Why using trailing edge flaps?

Deflecting a flap of 10-15% of blade chord 2 deg., the same change in lift as pitching the whole blade 1 deg. can be achieved.

Presentation at XXIII ICTAM
19-24 August 2012, Beijing, China
What has been achieved in the past?

Table III. Comparison of results from aeroservoelastic investigations with active flaps on the Upwind 5MW RWT.

<table>
<thead>
<tr>
<th>article</th>
<th>(c_f) [%]</th>
<th>(\Delta r_f / r) [%]</th>
<th>(\delta) [(\pm^\circ)]</th>
<th>T.I. [%]</th>
<th>shear exp. [-]</th>
<th>(V_{\alpha}) [%]</th>
<th>reduction in std of RBM [%]</th>
<th>reduction in DEL [%]</th>
<th>controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riziots et al. 2008</td>
<td>10</td>
<td>15-47</td>
<td>6</td>
<td>-</td>
<td>0.2</td>
<td>8, 12, 16</td>
<td>30-35 (range)</td>
<td>-</td>
<td>PID</td>
</tr>
<tr>
<td>Andersen et al. 2008</td>
<td>10</td>
<td>63</td>
<td>8</td>
<td>14-18</td>
<td>0.14</td>
<td>7, 11, 18</td>
<td>-</td>
<td>36.2-47.9</td>
<td>HPF+inflow</td>
</tr>
<tr>
<td>Lackner et al. 2009</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>NTM, ETM</td>
<td>0.2</td>
<td>8, 12, 16, 20</td>
<td>-</td>
<td>5.6-24.6</td>
<td>PID</td>
</tr>
<tr>
<td>Barlas et al. 2009</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>NTM</td>
<td>0.2</td>
<td>8, 11.4, 16</td>
<td>5.7-22.4</td>
<td>-</td>
<td>PID</td>
</tr>
<tr>
<td>Andersen et al. 2009</td>
<td>10</td>
<td>15-30</td>
<td>8</td>
<td>-</td>
<td>11.4</td>
<td>-</td>
<td>-</td>
<td>25-37</td>
<td>HPF</td>
</tr>
<tr>
<td>Resor et al. 2010</td>
<td>10</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td>0.2</td>
<td>15</td>
<td>26-30.9</td>
<td>27-31.3</td>
<td>PD, HPF+notch</td>
</tr>
<tr>
<td>Wilson et al. 2010</td>
<td>10</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td>0.2</td>
<td>15</td>
<td>13.3</td>
<td>15.5</td>
<td>LQR</td>
</tr>
<tr>
<td>Berg et al. 2010</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>6</td>
<td>0.2</td>
<td>15</td>
<td>8.7-18.1</td>
<td>10.9-17</td>
<td>PD, LQR</td>
</tr>
<tr>
<td>this article</td>
<td>10</td>
<td>18</td>
<td>8</td>
<td>6, NTM</td>
<td>0.2</td>
<td>7, 11.4, 15</td>
<td>10.9-30.7</td>
<td>10.9-27.3</td>
<td>MPC+inflow</td>
</tr>
</tbody>
</table>

Barlas, Thanasis; Van Der Veen, Gijs; van Kuik, Gijs; Model Predictive Control for wind turbines with distributed active flaps: Incorporating inflow signals and actuator constraints. Article first published online: 17 NOV 2011 DOI: 10.1002/we.503
What are the main parameters that constrain the load reduction potentials?

- controller
- sensor input
- actuation time constants
- limits on size of flaps
- limits on actuation amplitude
- limits on flap angle velocity
Approach

We assume:

- ideal controller
- ideal flow sensor input

What load alleviation can then be achieved?

Influence of:

- flap amplitude
- flap angle velocity
- flow sensor separation
- actuation time constants
An investigation on maximum load reduction potential using inflow sensor

Aeroelastic simulations on the 5MW reference wind turbine

- constant rpm
- 8m/s turbulent inflow
- both a flexible and stiff structural model simulated
The maximum load reduction potential

The flapwise moment low pass filtered at different cut off frequencies

Presentation at XXIII ICTAM, 19-24 August 2012, Beijing, China
The maximum load reduction potential

- The flapwise moment low pass filtered at different cut off frequencies.
- Then rainflow counting on the processed signals.

Presentation at XXIII ICTAM, 19-24 August 2012, Beijing, China
Load reduction potential – what can be achieved?

- the maximum load alleviation potential is found by numerical filtering
- can we achieve something like this with flap control if we have the ideal control signals?
- what would it require of the flap characteristics, e.g. by trying to alleviate the dynamic loads between 0.1 and 1Hz

The maximum load reductions for 0.1-1Hz are:

- m=3 63%
- m=10 48%
Ideal control signals – inflow data in the form of **inflow angle** and **relative velocity**

Inflow data from a five hole pitot tube

Inflow data from a small sensor airfoil

Wind tunnel test of flaps and inflow sensors
Control by inflow signals – aero normal force loading at one radial position considered

\[
F_N = \frac{1}{2} \rho V_r^2 C_N(\alpha)c
\]

\[
f_c = K_{\alpha} (\alpha - \bar{\alpha}) + \left(\frac{V_r^2 - \bar{V}_r^2}{V_r^2} \right) K_{V_r}
\]

where \(\bar{\alpha} \) and \(\bar{V}_r \) are exclude band filtered from 0.1 to 1Hz and \(f_c \) is the control signal.

\(K_{\alpha} \) and \(K_{V_r} \) are constants determined in order to maximize load reduction.

Presentation at XXIII ICTAM
19-24 August 2012, Beijing, China
Control by inflow signals – aero force loading at one radial position considered

Ideal control: \[F_{Nc} = F_N - f_c V_R^2 \]

where \(F_{Nc} \) is the controlled normal force

Flap control: \(f_c \) Flap aerodynamics + flap actuator dynamics \(F_{Nc} \)

The flap control is numerically simulated by the aeroelastic code HAWC2 where the flap aerodynamics and flap actuator dynamics are modelled.
Load reduction of normal force at radius 50 m – 10% TI

Ideal control – fatigue reductions

\[m=3 \]

Maximum: 50.8%
Alfa control: 43.1%
 percentage of max.: 84.9%
Alfa+vrel control: 49.0%
 percentage of max.: 96.5%

\[m=12 \]

Maximum: 42.7%
Alfa control: 39.1%
 percentage of max.: 91.7%
Alfa+vrel control: 41.5%
 percentage of max.: 97.4%
Load reduction of normal force at radius 50 m – 10% TI

Flap control – fatigue reductions

m=3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>50.8%</td>
</tr>
<tr>
<td>Flap – alfa</td>
<td>41.2%</td>
</tr>
<tr>
<td>percentage of max.</td>
<td>81.2%</td>
</tr>
<tr>
<td>Flap – alfa-vrel</td>
<td>44.9%</td>
</tr>
<tr>
<td>percentage of max.</td>
<td>92.3%</td>
</tr>
</tbody>
</table>

m=12

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>42.7%</td>
</tr>
<tr>
<td>Flap – alfa</td>
<td>37.9%</td>
</tr>
<tr>
<td>percentage of max.</td>
<td>88.9%</td>
</tr>
<tr>
<td>Flap – alfa-vrel</td>
<td>41.5%</td>
</tr>
<tr>
<td>percentage of max.</td>
<td>97.4%</td>
</tr>
</tbody>
</table>
Load reduction of normal force at radius 50 m – 10% TI

Raw normal force

Flap controlled normal force

Presentation at XXIII ICTAM 19-24 August 2012, Beijing, China
Flap amplitude saturates considerably at TI=20%
Load reduction of normal force at radius 50 m – influence of turbulence

Flap angle constrained to: +/- 5 deg.
Influence of frequency band on flap actuation speed – ti=10%

Band 0.1-1.0 Hz

Std. dev. = 3.52 deg/s

Fatt red. = 42.9%

Band 0.1-2.0 Hz

Std. dev. = 6.93 deg/s

Fatt red. = 57.9%
Influence of separation of flow sensor position from flap position
FN at radius 50 m controlled from an inflow sensor at different inboard separation distances
FN at radius 50 m controlled from an inflow sensor at different inboard separation distances

Bandwidth on inflow signal should be adjusted to avoid non-correlated control signals for increasing distance to flow sensor.
Influence of actuator time constant
Influence of actuator time constant

![Diagram showing the influence of flap actuator time constant on relative fatigue load alleviation for different rotor diameters and bandwidths.](Image)

- **126m Diameter rotor**
- **80m Diameter rotor**

Figure Legend:
- **RELATIVE FATIGUE LOAD ALLEVIAION m=10 [-]**
- **TIME CONSTANT [s]**
- **BW 0.1-0.32Hz**
- **BW 0.1-0.36Hz**
- **BW 0.1-0.61Hz**
- **BW 0.1-0.60Hz**
- **BW 0.1-0.90Hz**
- **BW 0.1-1.20Hz**
Preliminary analysis of measurements on an 80m diameter rotor
Example of 2MW rotor with inflow sensors

Four 5 hole pitot tubes installed on a NM80 turbine with an 80m rotor

Aero normal forces measured at four radial positions by pressure holes

Experiment carried out within the DAN-AERO project from 2007-2010: LM, Vestas, Siemens, DONG Energy and Risø DTU

Presentation at XXIII ICTAM 19-24 August 2012, Beijing, China
NM80 turbine – measured inflow at $R=30m$

alpha

relative velocity

Presentation at XXIII ICTAM
19-24 August 2012, Beijing, China
NM80 turbine – control of FN at R=30m from inflow measurement

Fatt. Red. 35.6%
NM80 turbine – control of FN at R=30m from inflow measurement

NM80, FN AT RADIUS 30m, Sept. 1st, 10:00

Fatt. Red. 35.6%
Conclusions (1of2) on use of inflow data for load alleviation control

- for the optimal positioned inflow sensor more than 90% of the absolute achievable load reduction can be obtained by a flap

- information on the relative velocity variations contributes with about 10% to the load reduction

- flap aerodynamics (aerodynamic response delay) reduce only minorly the ideal load reduction potential
Conclusions (2 of 2) on use of inflow data for load alleviation control

- one inflow sensor could be used for a 5-10m long flap, bandwidth 0.1-1Hz

- for bigger separation distance the control signal bandwidth should be reduced

- rotor size has considerable influence on reduction of load alleviation due to flap actuator time constant
Thank you for your attention!