In-depth analysis of Aspergillus niger metabolism during industrial fed-batch fermentations

Pedersen, Lasse; Hansen, Kim; Nielsen, Jens; Eliasson Lantz, Anna; Thykær, Jette

Link to article, DOI: 10.1016/j.nbt.2009.06.158

Publication date: 2009

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
In-depth analysis of A. niger metabolism during industrial fed-batch fermentations

Lasse Pedersen¹, Kim Hansen², Jens Nielsen³, Anna Eliasson Lantz¹, Jette Thykaer¹

1 Center for Microbial Biotechnology, Technical University of Denmark, 2 Novozymes A/S, 3 Department of Chemical and Biological Engineering, Chalmers University of Technology

Introduction

Aspergillus niger is used industrially to produce different products, e.g. citric acid and enzymes. For the production of glucoamylase the fungus is grown in a fed-batch process.

The process has the following characteristics:
- High initial glucose concentration
- Oxygen limitation during most of the fermentation
- Initial formation and later reconsumption of large amounts of byproducts (mainly glycerol, mannitol, erythritol, and citrate)

The aim of this study was to i) provide detailed physiological information about the glucoamylase production process and ii) examine relationships between different process parameters important for process design.

Results

A model process mimicking the industrial process was set up in 2L scale. The data was treated to remove effects of dilution and the fermentations were divided into phases based on the observed metabolism. An example of such a fermentation is shown in figure 1, and the corresponding yield data is shown in table 1.

An alternative process with low glucose concentration was set up to examine the effect of osmolality. To avoid carbon limitation the process was dosed proportional to oxygen uptake which is fairly linearly related to glucose uptake. An example is shown in figure 2, and corresponding yield data is shown in table 2.

Summary

Byproduct formation is by default expected to lead to lower yield of the desired product. This was shown not to be the case for the glucoamylase process. During oxygen limitation of the model process a lot of byproducts were formed. However, the glucoamylase yield (Yp) was at its maximum, table 1. Hence, it was seen that phases with high byproduct yields also featured high glucoamylase yields. Furthermore, the formed byproducts were recycled and turned into product in a later phase.

Glycerol formation is a response to high osmolality¹. Reducing glucose concentration decreased the formation rate of byproducts, but because all other rates decreased as well and mannitol production substituted glycerol production the byproduct yield remained unchanged. Product yield was lower at low glucose concentration. It therefore did not seem to be straight forward to reduce byproduct formation without reducing product formation as well.

In carbon-limited chemostats the glucoamylase productivity has been correlated to growth¹. In the present study no growth relation was observed. Reduction in growth and even autolysis did not affect product formation noticeably. In the model process the glucoamylase productivity was reduced when glucose was depleted, which was expected from known induction characteristics of the promoter².

Acknowledgement

The PhD project of Lasse Pedersen is sponsored by Novozymes Bioprocess Academy

References:

Table 1. Average yields from the model process.

<table>
<thead>
<tr>
<th>Phase limits</th>
<th>Fermentation time [h]</th>
<th>Biomass [g/L]</th>
<th>Glucoamylase [g/L]</th>
<th>Byproduct [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-120</td>
<td>20.0</td>
<td>2.5</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>120-180</td>
<td>28.0</td>
<td>3.0</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>180-240</td>
<td>36.0</td>
<td>3.5</td>
<td>1.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

¹Based on total carbon uptake (glucose + metabolites).

Table 2. Average yields from the alternative process.

<table>
<thead>
<tr>
<th>Phase limits</th>
<th>Fermentation time [h]</th>
<th>Biomass [g/L]</th>
<th>Glucoamylase [g/L]</th>
<th>Byproduct [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-120</td>
<td>20.0</td>
<td>2.5</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>120-180</td>
<td>28.0</td>
<td>3.0</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>180-240</td>
<td>36.0</td>
<td>3.5</td>
<td>1.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

¹Based on total carbon uptake (glucose + metabolites).

Figure 1. Model fed-batch fermentation.

Figure 2. Alternative fed-batch fermentation.

In depth analysis of A. niger metabolism during industrial fed-batch fermentations

Lasse Pedersen¹, Kim Hansen², Jens Nielsen³, Anna Eliasson Lantz¹, Jette Thykaer¹

1 Center for Microbial Biotechnology, Technical University of Denmark, 2 Novozymes A/S, 3 Department of Chemical and Biological Engineering, Chalmers University of Technology