Theory of Rectification in Tour Wires: The Role of Electrode Coupling

Taylor, Jeremy Philip; Brandbyge, Mads; Stokbro, Kurt

Published in: Physical Review Letters

Link to article, DOI: 10.1103/PhysRevLett.89.138301

Publication date: 2002

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
The study of electron transport through single molecules is a rapidly developing field, stimulated by many recent experiments [1–5] that show that single molecules can be made into useful functional elements of an electronic device. Rectifiers have played a key role in the development of molecular electronics both because they formed the basis for the first proposal of a unimolecular electronic device by Aviram and Ratner [6], and because they are one of the simplest functions to build into an electronic component [7]. The molecular rectifier proposed by Aviram and Ratner [6] and a related class studied by Metzger [3] have relatively simple structures, consisting of an organic molecule with donor-barrier-acceptor regions. In these devices, there is a built-in asymmetry in the structure of the molecule, which leads to asymmetric current-voltage characteristics. In this paper, we will concentrate on rectification in symmetric molecules. Some experiments on symmetric molecules have shown rectification [8–10], while others have found very little or no rectification [11,12]. Electronic transport experiments on such molecular monolayers are often performed by evaporating and chemisorbing the molecules to a substrate using an appropriate “alligator-clip” [13], which interacts strongly with the surface to selectively bind one part of the molecule to the substrate. A second probe [STM (e.g., 8)], evaporated metal electrode (e.g., [9]), or mechanical break junction (e.g., [11]) is then used to apply a bias and study the electronic transport properties, resulting in an asymmetry in the coupling strength of the electrodes used to draw the current, which is the origin of the current rectification.

The understanding is that the potential drop along the molecule changes the alignment of the molecular levels (the energies at which resonant tunneling occurs) with the electrochemical potential of the substrate and tip (the energy at which electrons or holes are injected). Asymmetric electrode coupling can result in an asymmetric potential profile along the length of the molecule [12]. If the potential profile is asymmetric, the molecular level can line up differently in positive and negative bias, resulting in rectification. While the potential drop plays a key role in aligning the molecular levels with the electrochemical potentials, the ultimate performance of such devices will also be influenced by the current reduction due to a weak coupling of the second electrode, and the width of the transmission resonance which carries the current, which can be significant for chemisorbed molecules that interact strongly with the surface [14].

In this paper, we will use state of the art first-principles electron transport calculations to study the relation between rectification and forward bias current for an organic molecule coupled to metallic electrodes. The organic molecule is a phenylene ethynylene oligomer [15], a so-called “Tour wire,” consisting of phenyl rings separated by triply bonded carbon atoms, forming a long rigid molecule with \(\pi \)-conjugated delocalized frontier orbitals. Tour wires can be synthesized as long oligomers, and have become popular building blocks for molecular electronic components [15]. A thiol-gold bond is proposed to selectively couple the Tour wire to an Au(111) substrate. We will investigate the change in the current-voltage characteristics as the distance to a second Au(111) surface or tip is increased, thus weakening the molecule-tip coupling. We will compare our results with related experimental studies of rectification in symmetric single molecules [8–12].

The calculations have been carried out using a first-principles nonequilibrium Green's function based electronic transport package, TRANSIESTA [16]. Recently, there have been several first-principles theoretical studies of electron transport in organic molecules under finite bias conditions [17,18] which differ mainly in their description of the semi-infinite electrodes and their interaction with the molecules in the contact region. Our method is based on density functional theory [19], treats the system self-consistently under finite bias conditions, and describes the electronic structure of the whole system (contact and electrodes) on equal footing. Since the coupling of the organic molecule to the electrode plays a central role in the present study, it is of particular importance to make an accurate model of the electrode itself and, most importantly, the molecule-electrode interface [20]. Therefore, for the purposes of this study, it is imperative to use a method that describes the electrodes.
using the same model chemistry as the contact region
[16,17], which is the only way to obtain a first-principles,
parameter-free treatment of the broadening and align-
ment of the molecular levels.

The two systems we have investigated are shown in
Figs. 1(a) and 1(b) [21]. They each consist of a 3-phenyl-
ing Tour-molecule coupled to Au(111) electrodes [22],
the first surface layer of which are shown here. Molecule
A, depicted in Fig. 1(a) is symmetrically bonded to the Au
electrodes with thiol end groups [23]. Molecule B, de-
picted in Fig. 1(b), is thiol-bonded to the left electrode
while the other end is terminated by an H atom, not
bonded to the right Au electrode. We will here consider
the effect of increasing the vacuum distance \(d \) between
the terminal H atom and the first atomic plane of the right
Au(111) electrode.

In Figs. 1(a) and 1(b), we also show the the induced
density and potential for an applied bias potential
of \(eV_b = \mu_L(V_b) - \mu_R(V_b) = -1 \text{ eV} \), where \(\mu_L(V_b) =
\mu_L(0) + eV_b/2 \) and \(\mu_R(V_b) = \mu_R(0) - eV_b/2 \) are the
chemical potential of the left/right electrodes, respec-
tively. For molecule A, the potential does not drop at the
contacts but drops relatively uniformly along the length
of the molecule. It is, however, clear that there is a differ-
ence in the screening properties in different parts of the
molecule. The induced density consists mainly of anti-
bonding \(\pi \) orbitals along the molecular axis, whereas the
induced density and potential are screened out of the
phenyl rings. The electric field sets up dipoles between
the atoms along the molecular axis, which can be corre-
lated to drops in the potential profile. When a bias is
applied to the system, the S atoms couple differently to
the bands of the left and right Au(111) surfaces, resulting
in induced charges of different orbital characters on the S
atoms. In molecule B, the electric field increases near the
right electrode and there is an additional drop at the right
electrode due to the difference in dielectric constant of
the molecule \((\epsilon_M = 3.5\epsilon_0) \) and the vacuum tunnel barrier.
Again, the induced potential and density is screened out
of the two leftmost phenyl rings of molecule B but the
rightmost ring is influenced by the comparatively
stronger field.

In Figs. 2(a) and 2(b), the calculated transmission
spectra \(T(E, V_b) \) are plotted for different bias voltages
\(-1.2 \text{ V} < V_b < +1.2 \text{ V} \) (each curve is vertically shifted
for clarity, representing a difference of 0.1 \text{ V}). The
dashed lines represent the transmission spectrum at equi-
librium. The current is obtained using the Landauer-
Büttiker formula [24]:
\[
I = \int_{-\mu_L}^{\mu_R} T(E, V_b) dE.
\]
The energy region which contributes to the current integral above,
which we refer to as the bias window, is indicated by the
thick black lines in Figs. 2(a) and 2(b). It is observed that
the transmission is dominated by the highest occupied
molecular orbital (HOMO), located \(\approx 1 \text{ eV below the}
average electrochemical potential. The lowest unoccupied
molecular orbital (LUMO) is further away from the bias
window and thus does not significantly contribute to the
current in this bias range. Molecule A has a high con-
ductance of \(G \approx 10^{-2} G_0 (= \frac{2e^2}{h}) \) with near perfect trans-
mision resonance amplitudes \((T \approx 1) \) at the molecular
levels. Such high conductivities have also been observed

\[
\begin{align*}
\text{FIG. 1 (color).} & \quad \text{(a) Geometry of molecule A connected to two}
\text{Au(111) surfaces. Isosurface of induced density and contour}
\text{plot of induced potential at } eV_b = \mu_L - \mu_R = -1 \text{ eV. In the}
\text{contour plot, red (blue) represents low (high) electrostatic}
\text{potential and high (low) effective potential. For the isosurface,}
\text{blue represents accumulation of positive charge (holes) and}
\text{gray represents negative charge (electrons). (b) Similar to (a)}
\text{but for molecule B at } d = 2.7 \text{ Å.}
\end{align*}
\]

\[
\begin{align*}
\text{FIG. 2. (a) Transmission spectra, } T(E, V_b), \text{ (thin lines,}
\text{shifted vertically for clarity), bias window (thick black lines),}
\text{and equilibrium transmission (dashed line) for molecule A.}
\text{Equilibrium conductance: } G = 10^{-2} G_0. \text{ Transmission peaks}
\text{correspond to } T \approx 1. \text{ (b) Similar to (a) but for molecule B at}
\text{ } d = 2.7 \text{ Å. Equilibrium conductance: } G = 10^{-4} G_0. \text{ Trans-
mission peaks correspond to } T \approx 10^{-2}. \text{ (c) Current-voltage}
\text{characteristics of molecule A and molecule B. (d) Black squares:}
\text{Rectification at } V_b = \pm 1 \text{ V and total current at } V_b = 1 \text{ V as a function of separation distance } d. \text{ White squares: Rectification}
\text{obtained from a simple model, introduced below.}
\end{align*}
\]

138301-2
in experiments using related molecules [1,5]. Molecule B has a significantly lower conductance, \(G \sim 10^{-4} G_0 \), and transmission resonance amplitudes (\(T = 10^{-4} \)), due to the presence of a tunnel barrier between the molecule and the right electrode. In Fig. 2(c), we show the current in the molecules \(I_A(V_b) \) and \(I_B(d = 2.7 \, \text{Å}, V_b) \) as a function of applied bias \(V_b \). Molecule A has a symmetric \(I-V_b \) characteristic \(R_A(|V_b|) = I_A(+|V_b|)/I_A(-|V_b|) = 1 \). A strong rectification effect is observed in molecule B: \(R_B(d = 2.7 \, \text{Å}, V_b = 1.0 \, \text{V}) \equiv I_B(d = 2.7 \, \text{Å}, V_b = +1 \, \text{V}) / I_B(d = 2.7 \, \text{Å}, V_b = -1 \, \text{V}) \sim 7 \), in good agreement with experimental measurements [8].

To explain this effect, we will consider the shift of the molecular levels under an external bias potential. The molecular levels follow the average effective potential within the molecule so we can write, to first order, \(E_M = \mu_L(V_b) - \delta E_M - \eta e V_b \), where \(E_M \) is the energy of the molecular level, \(\delta E_M \) is the zero-bias displacement of the molecular level below \(\mu_L \), and \(0 < \eta < 1 \) refers to the fraction of the potential drop that occurs between the molecule and the left electrode [12]. The fraction \(\eta \) can be estimated from \(\epsilon_m \), and the molecular length, \(L_M: \eta = \frac{L_M}{2 \epsilon_m} \left(\frac{\mu}{\epsilon} + \frac{\delta}{\epsilon} \right) \). In a symmetrically contacted molecule, such as molecule A, \(d = 0 \), and \(\eta = 1/2 \), and thus the molecular levels are unchanged by the bias potential. At higher voltages, \(E_M \) can approach either \(\mu_L \) or \(\mu_R \), as illustrated in Fig. 2(a), where the HOMO is seen to approach \(\mu_R \) at positive voltages and \(\mu_L \) at negative voltages. In the case of molecule B, where \(d = 2.7 \, \text{Å} \), there is an additional drop across the vacuum barrier and \(\eta = 0.4 < 1/2 \) so that the energy levels begin to follow the substrate electrochemical potential, \(\mu_L \). This is clearly seen in Fig. 2(b), where the HOMO and the LUMO follow \(\mu_L \) in both positive and negative bias polarities. From this, it is easy to understand why molecule B is a rectifier. At positive bias, the HOMO moves up in energy and \(\mu_R \) moves down, so that a larger fraction of the HOMO resonance peak enters the bias window while at negative bias, the resonance is pushed out of the bias window, resulting in a lower current.

Since the introduction of the vacuum gap leads to asymmetric current-voltage characteristics, it is natural to ask how much rectification this system can deliver as the vacuum gap is further increased. To investigate this, we have calculated the current at \(V_b = \pm 1 \, \text{V} \) as a function of the molecule-tip separation distance \(d \). The result is shown in Fig. 2(d). As the distance is increased, the forward current level decreases roughly exponentially. The potential drop fraction \(\eta \) decreases as the vacuum gap is increased and the HOMO becomes more closely tied to \(\mu_L \), increasing \(R_B(d, |V_b| = 1 \, \text{V}) \). It is important to note that one cannot obtain unlimited rectification by decreasing the molecule-electrode coupling: \(R_B(d, |V_b| = 1 \, \text{V}) \) saturates and even decreases slightly as the distance \(d \) is increased. A simple model introduced below, which takes into account only the width of the HOMO resonance, the zero-bias HOMO energy as a function of \(d \), and a subsequent shift by \(\pm \eta e V_b \), agrees quite well with the \textit{ab initio} results, as shown by the white squares in Fig. 2(d).

Similar explanations of rectification in symmetric molecules have previously been proposed in the literature, e.g., Refs. [10,12]. However, such studies did not consider the finite width of the molecular levels and their proximity to the Fermi level. We can, for the first time, directly extract this information from our \textit{ab initio} calculations. From the data, it is clear that the resonances in such systems are generally quite broad and can significantly influence the rectification properties. Here, we introduce a simple model, illustrated in Fig. 3(a), which takes these factors into account to explain the rectification saturation in such systems. We will assume that the entire current is due to transmission through the HOMO level, that the width of the HOMO level is independent of the bias and its position follows the average potential within the molecule. We note that the transmission data in Fig. 2(b) can be approximated using a Lorentzian with width of \(\Delta \sim 0.2 \, \text{eV} \) centered on the molecular level at \(\delta E_M \). Integrating the Lorentzian transmission curve, one obtains the current as a function of bias voltage: \(I(V_b) = \frac{1}{\pi} \tan^{-1} \frac{\delta E_M + \eta e V_b}{\Delta} - \tan^{-1} \frac{\delta E_M + (1-\eta) e V_b}{\Delta} \). In Fig. 3(b), we show the rectification, \(R(|V_b|) \equiv |I(+|V_b|)| / |I(-|V_b|)| \), as a function of the applied voltage \(V_b \) for \(\delta E_M = 5\Delta \) and different values of \(\eta \). For finite \(\eta \), \(R(|V_b|) \) increases to a maximum around \(e V_b = 8\Delta \) and decreases at higher biases as the bias window becomes broad enough so that the transmission peak enters at both polarities. Thus, the proximity of the HOMO to \(\mu_L \), \(\delta E_M \), limits the operation range of such a rectifier and, consequently, the total forward current. In Fig. 3(c), we plot the maximum rectification \(R_{\text{max}} \) as a function of \(\delta E_M \) for different values of \(\eta \). It is clear that \(R_{\text{max}} \) is greatest at \(\eta = 0 \) and decreases as \(\eta \) is
increased. Furthermore, $R_{\text{max}} \propto \delta E_M/\Delta$ and can thus be changed by either changing the alignment of the molecular levels, δE_M, or changing the width of the resonance Δ.

We expect these broad resonances to be important in other strongly chemisorbed molecules on metallic substrates [8–12]. Using this model, one can estimate the maximum rectification one would expect from a given molecule. For the molecules studied in this paper, the width is of the order $\Delta \sim 0.2$ eV, and the HOMO level sits around $\delta E_M \sim 1.0$ eV. Using STM vacuum distances of $d < 5 \, \text{Å}$, one estimates $\eta \approx 0.25$ and $R_{\text{max}} < 10$. Shorter one-phenyl ring molecules ($L_M \approx 7 \, \text{Å}$), tend to decrease η (if $d < 5 \, \text{Å}$, $\eta \approx 0.15$) and one might thus expect stronger rectification. However, studies of these molecules [8,11,12] have found little or no evidence of rectification. We have studied the transmission properties of benzenethiol, coupled to Au(111) electrodes [25] and have found very broad transmission resonances of $\Delta \sim 0.7$ eV and molecular levels at $\delta E_M \sim 1.0$ eV, so that $\delta E_M \sim 1.5\Delta$. The increase in Δ more than compensates for the decrease in η and we expect a $R_{\text{max}} < 4$ in this system. Such an estimate does not fully account for the lack of rectification in such experiments but serves to highlight that both the potential drop, described by η [12], and the width of the molecular resonances, described by $\delta E_M/\Delta$, must be taken into account. It is also interesting to compare our model to another experiment [9], in which a large rectification ratio of 500:1 was observed in a similar molecule. In our model, such a rectification effect would correspond to a level where $\delta E_M^2 > 100$. Assuming that $|\delta E_M| < 2$ eV, a broadening of $\Delta < 20 \, \text{meV} = kT$ would be required. This is an order of magnitude smaller than the resonances we have calculated and suggests that the current in the above experiment is not mediated by any of the molecular levels that interact strongly with the surface.

In this paper, we have studied rectification in organic molecules with asymmetric electrode coupling. The results of our ab initio calculations were summarized by a simple model of general validity, which emphasizes the fact that both the potential profile and the width of the transmission resonances must be taken into account to understand such devices.

We would like to thank J.-L. Mozos and P. Ordejon for help in implementing TRANSIESTA. We acknowledge funding from the SNF (M.B.), STVF (K.S., J.T.), NSERC (J.T.), EU SANEME, and support from Dieker IG Henriksens fund.

[20] The electrode is modeled as a (3×3)-Au(111) surface cell. For single phenyl-ring molecules, we have verified that this unit cell gives the same results as a (4×4) unit cell.
[22] The molecular geometries were first optimized as free molecules with H terminated S atoms, then attached to the Au surfaces and allowed to relax while Au atoms were kept fixed.
[23] The S atoms were placed 1.87 Å from the fcc position of Au(111). The precise absorption site of these molecules on Au(111) is not known. The broadening of the molecular level Δ is weakly dependent on the coordination of the S atom and thus a different absorption site may slightly change the width of the transmission resonance.