Electronic and atomic structure of the Al_nH_{n+2} clusters

Martinez, Jose Ignacio; Alonso, J.A.

Published in: Journal of Chemical Physics

Link to article, DOI: 10.1063/1.2960627

Publication date: 2008

Document Version
Publisher's PDF, also known as Version of record

Electronic and atomic structure of the Al$_{n}$H$_{n+2}$ clusters

J. I. Martínez1,2,a and J. A. Alonso1,3

1Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, E-47011 Valladolid, Spain
2Center for Atomic-Scale Materials Design, Department of Physics, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
3Donostia International Physics Center (DIPC), E-20018 San Sebastian, Spain

(Received 7 April 2008; accepted 26 June 2008; published online 18 August 2008)

The electronic and atomic structure of the family of hydrogenated Al clusters Al$_n$H$_{n+2}$ with n = 4–11 has been studied using the density functional theory with the generalized gradient approximation (GGA) for exchange and correlation. All these clusters have substantial gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) and, consequently, they are chemically very stable. The largest gap of 2.81 eV occurs for Al$_{16}$H$_8$. Five clusters of the family, Al$_6$H$_6$, Al$_7$H$_7$, Al$_9$H$_8$, Al$_{10}$H$_9$, and Al$_{10}$H$_{12}$, fulfill the Wade–Mingos rule. That is, in Al$_{n}$H$_{n+2}$, the Al matrix forms a polyhedron of n vertices and n H atoms form strong H–Al terminal bonds; one pair of electrons is involved in each of those bonds. The remaining $n+1$ electron pairs form a delocalized cloud over the surface of the Al cage. The clusters fulfilling the Wade–Mingos rule have wider HOMO-LUMO gaps and are chemically more stable. The trends in the gap have some reflections in the form of the photoabsorption spectra, calculated in the framework of time-dependent density functional theory using the GGA single-particle energies and orbitals and a local density approximation exchange-correlation kernel. © 2008 American Institute of Physics. [DOI: 10.1063/1.2960627]

I. INTRODUCTION

Small atomic clusters represent a form of matter with unexpected properties and with a potential for a great number of applications in nanotechnology. One of the most interesting characteristics of clusters is the variation of the stability as a function of the cluster size, which shows up in the abundance mass spectrum measured in cluster beams, as pronounced peaks, usually called magic numbers. The reasons underlying the enhanced stability of the magic clusters are well known in many simple cases but not in other more complex ones, which still require an explanation. Aluminum and boron are elements in the same group of the periodic table. While boron forms many hydrides, known as the boranes, and aluminum forms hydrides, known as the alanes, there are only a few hydrides. Nevertheless, by reacting Al$_n^-$ cluster anions (n = 3–20) with a high concentration of hydrogen, about 200 previously unobserved aluminum hydride anions have recently been detected by Li et al. The mass spectrum showed the special and unexpected stability of Al$_6$H$_6$. This was explained on the basis of the Wade–Mingos (WM) rules for electron counting, suggesting that Al$_6$H$_6$ may be a borane analog. These experimental results have motivated us to look at other aluminum hydrides of the Al$_{n}$H$_{n+2}$ family.

The WM rules were originally established to relate the geometries of B$_n$H$_{2n-2}$ boranes, which contain $2n+1$ valence electron pairs, to their electronic structures. The best known form of the WM rules, states that n of those pairs are required to form the B–H terminal bonds, leaving $n+1$ pairs for cage bonding. The WM $n+1$ rule states that a borane with $n+1$ electron pairs for the boron skeletal bonding will have a metallic matrix based on an n-vertex polyhedron. This is the case of B$_6$H$_{12}$, where the six B atoms form an octahedral structure. In addition to the boranes and the Al$_6$H$_6$ alane, WM rules have been successful in relating electronic structure to geometric structure in other classes of clusters.

In a recent study Kiran et al. have studied other clusters formed by aluminum and hydrogen with stoichiometries rich in aluminum. They proposed an electron counting rule enabling to predict the size, composition, and structure of magic clusters: Al$_{6}$H$_{2}$, Al$_{7}$H$_{3}$, Al$_{9}$H$_{4}$, Al$_{10}$H$_{5}$, Al$_{11}$H$_{6}$, and Al$_{12}$H$_{8}$. The work on alanes is usually motivated by the interest in finding materials with a good capacity to store hydrogen and our study, apart from testing the applicability of the WM rules, also shares that motivation.

In this paper we present a theoretical study of the atomic and the electronic structures of clusters of the family Al$_{n}$H$_{n+2}$ with n = 4–11, using the density functional theory (DFT). To our knowledge, only one cluster of this family, Al$_8$H$_6$, has been studied before. One of the questions that we analyze is the extent to which those clusters fulfill the WM rule. In addition we make predictions of the photoabsorption spectra of these clusters, and for that purpose we use the time-dependent DFT (TDDFT) (Refs. 18 and 19) to calculate the electronic excitations.

II. STRUCTURE AND ELECTRONIC PROPERTIES

In the calculation of the atomic and the electronic structures of pure aluminum clusters and their hydrides we have used the ABINIT code, in which the Kohn–Sham (KS) equations of DFT are solved using a periodic supercell geometry. The electronic wave functions are expanded in a basis of...
plane waves. The interaction between the valence electrons and the ions has been modeled by replacing the ionic cores by Troullier-Martins pseudopotentials generated with the FHI98PP package. The parameters characterizing the pseudopotentials are given in Table I.

We have used a cubic supercell of size $30 \times 30 \times 30$ a.u.3, an energy cutoff of 50 Ry for the basis of plane waves and a single k point in reciprocal space. The supercell size and the cutoff have been adjusted to achieve sufficient accuracy in the total energy. For exchange and correlation (XC) effects we have used the Perdew–Burke–Erzenhof (PBE) functional within the generalized gradient approximation (GGA). We have also performed some tests using other more complex XC functionals: the van Leeuwen–Baerends functional, which improves the asymptotic behavior of the XC potential, and the hybrid PBE0 functional which mixes the PBE functional with a fraction (0.25) of the exact exchange. The results obtained show no significant differences in comparison to the results of the PBE functional. Actually, the PBE0 functional has been used for testing the most stable $\text{Al}_n\text{H}_{n+2}$ structures and their main isomers, obtaining the same ground-state structures and the same isomer energy ordering as with the PBE functional. Consequently, the PBE functional has been employed through the paper in order to reduce the computational effort.

A. Structures of pure Al clusters and their hydrides

As a first step we have studied pure Al_n clusters. By starting with the structures reported by Rao and Jena, we have reoptimized the structures and the results are shown in Fig. 1 for $n=4–11$. The optimized structures are in good agreement with the starting geometries, except for the Al_4 and Al_5. According to the present calculations, those two clusters have nonplanar C_{2v} and D_{3h} symmetries, respectively, instead of the planar structures previously obtained. Al_6 is a distorted octahedron, and Al_7 and Al_8 have the octahedral structure with one and two faces capped by Al atoms, respectively. For $n=7$ and 8 we also include in the figure one and two metastable isomers, respectively, lying close in energy above the ground state. Those low lying isomers have also been taken as additional starting geometries for the investigation of the hydrides. Al_9 can be seen as formed by two fused trigonal bipyramids, sharing one face, and then adding two Al atoms in bridge positions, one to each bipyramid. Al_{10} is a cube, a little distorted, and with two opposite faces capped by Al atoms. Finally, Al_{11} is the last cluster without internal atoms. Starting from $n=12$, Rao and Jena predicted structures showing at least one endohedral atom, and for this reason we have not studied clusters with more than eleven Al atoms.

Previous work on hydrogenated Al clusters indicates that the H atoms stay on the surface of the Al matrix, and that hydrogenation affect the structure of the matrix a little. Then, for the construction of the starting geometries, we have taken the pure Al clusters of Fig. 1 as cores for the hydrogenated clusters. The optimal structures of the $\text{Al}_n\text{H}_{n+2}$ clusters have been obtained by relaxing several dozens of initial geometries with the H atoms added to the surface of Al_n at different positions: On top of Al atoms (top sites), on Al–Al bonds (bridge sites), and on the faces (face sites). During the structural relaxations all atoms are free to move, and a steepest-descent algorithm with a convergence criterion of 10^{-2} eV/Å for the force on every atom has been used. It is noticeable that the ground state is obtained from a large number of starting geometries, giving credibility to the optimized structure. In addition, we have performed a number of tests for starting geometries with H atoms in the inner region of the Al clusters, and those calculations revealed that structures with endohedral H impurities are not favored, at least for the sizes and H concentrations studied in this work; those initial endohedral structures always evolve toward structures with all the H atoms in exohedral positions. The most stable structures obtained for the $\text{Al}_n\text{H}_{n+2}$ alanes with $n=4–11$ are shown in Fig. 2.

Al_4H_6 keeps the tetrahedral structure of the Al_4 matrix structure practically unaltered. To gain some insight into the process of hydrogenation, additional calculations for Al_4H_n.

![Fig. 1. (Color online) Optimized structures of Al_n clusters with $n=4–11$. The geometries belong to the C_{2v} symmetry group for $n=4$ (distorted tetrahedron), D_{3h} for $n=5$ (triangular bipyramid), and O_3 for $n=6$ (square bipyramid). For Al_7 and Al_8 the two and three most stable isomers are shown, respectively, including the energy difference with respect to the most stable structure (ground state).](image-url)
clusters with \(m = 4, 5, \) and 7 have been performed. In \(\text{Al}_4 \text{H}_6 \), the four H atoms are located on top positions, that is, each H atom forms a covalent bond with an Al atom. In \(\text{Al}_5 \text{H}_7 \) and \(\text{Al}_6 \text{H}_8 \), four H atoms are on top positions and the additional H atoms occupy bridge positions. \(\text{Al}_7 \text{H}_9 \) has been found very abundant in the mass spectrum of \(\text{Al}_4 \text{H}_6 \). For this cluster Li et al.\(^9\) obtained a structure of a distorted tetrahedron with four terminal H atoms (four Al–H bonds) and two bridging H atoms. Our structure for this cluster is the same. Although a more extensive search could be done, we think that the structures of the hydrogenated clusters given in Fig. 2 represent the lowest energy structures or are very close to them. First of all, we have seen that the structural relaxation of the hydrogenated clusters allows for strong changes in the starting structure, and that those changes also affect the Al core. On the other hand, when we have relaxed the geometries of the hydrogenated clusters by starting with several isomers of the corresponding \(\text{Al}_n \) core, the lowest energy structure of the hydrogenated cluster has always been found in the relaxations starting from the ground-state \(\text{Al}_n \) core (sometimes, as for \(\text{Al}_5 \text{H}_6 \), the lowest energy structure is also obtained starting from other isomers).

To be consistent with the structural formulation of the WM rule (or \(n + 1 \) rule), a cluster \(\text{Al}_n \text{H}_{n+2} \), with \(2n + 1 \) electron pairs (each Al atom contributes three electrons and each H atom one), should employ \(n \) electron pairs for Al–H terminal bonds and the remaining \(n + 1 \) pairs for cage bonding, and the structure should be based on an Al polyhedron with \(n \) vertices. Clusters \(\text{Al}_4 \text{H}_6 \), \(\text{Al}_5 \text{H}_7 \), \(\text{Al}_6 \text{H}_8 \), \(\text{Al}_7 \text{H}_9 \), and \(\text{Al}_8 \text{H}_{12} \) fit well into this picture. All those clusters show \(\text{Al}_n \) skeletal cages with \(n \) vertices and have \(n \) hydrogen atoms on top positions (see Fig. 2). An analysis of the electron density in Sec. II B below shows that \(n \) electron pairs contribute to Al–H radial bonds, and that the other \(n + 1 \) electron pairs form a rather delocalized cloud responsible for cage bonding. On the other hand, \(\text{Al}_9 \text{H}_{10} \), \(\text{Al}_{10} \text{H}_{11} \), and \(\text{Al}_{11} \text{H}_{13} \) do not conform to that rule. For instance, in \(\text{Al}_{10} \text{H}_{10} \), four H atoms are located in bridge positions, and therefore there are only six H atoms forming terminal Al–H bonds. In a similar way the number of H atoms forming terminal bonds with H in \(\text{Al}_{10} \text{H}_{11} \) and \(\text{Al}_{11} \text{H}_{13} \) is smaller than 9 and 11, respectively. According to Rao and Jena,\(^{26}\) \(\text{Al}_{12} \) and larger pure Al clusters have an Al atom in an endohedral location, so we have not considered clusters with 12 or more Al atoms in our study. Returning to the \(\text{Al}_n \text{H}_{n+2} \) clusters with \(n \) hydrogen atoms in top sites, the two additional H atoms of \(\text{Al}_6 \text{H}_8 \) and \(\text{Al}_7 \text{H}_9 \) are located in bridge sites, and occupying face sites in \(\text{Al}_8 \text{H}_9 \), \(\text{Al}_9 \text{H}_9 \), and \(\text{Al}_{10} \text{H}_{12} \). That is, a change from H atoms on bridge sites to face sites occurs in the alanes between \(\text{Al}_6 \text{H}_7 \) and \(\text{Al}_7 \text{H}_9 \).

The highest occupied molecular orbital-lowest unoccupied molecular orbital (LUMO) (H-L) gaps of the \(\text{Al}_n \text{H}_{n+2} \) clusters, calculated as a difference between the KS energies of the corresponding one electron orbitals, are reported in Fig. 3. The gaps are large, exhibiting values ranging between 1.35 and 2.8 eV, giving idea of the stability of those clusters.

FIG. 2. (Color online) Most stable structures of neutral \(\text{Al}_n \text{H}_{n+2} \) clusters up to \(n = 11 \). The dark and light spheres represent the Al and the H atoms, respectively.
The largest H-L gap occurs for Al₆H₈. A local maximum for Al₁₀H₁₂ is also noticeable, which breaks the trend of decreasing gap on the right side of Al₆H₈. The calculated gap of Al₁₀H₁₂ is 2.2 eV, in good agreement with the experimental value of 1.9 eV. Figure 3 also includes the electronic affinities (EAs). These have been calculated as a difference of the total energies of the anionic and the neutral clusters. To avoid problems related to the long range electrostatic interaction between charged supercells which arise in a periodic supercell calculation for the anionic species, calculations for the neutral and anionic clusters have been performed with the real-space DFT code OCTOPUS. The main numerical parameters that need to be specified in these calculations are the spacing of the spatial mesh, 0.18 Å, and the wave function domain, a sphere of radius 9.5 Å. To be consistent, the geometries of the neutral clusters were reoptimized with the OCTOPUS code. The structures of the negatively charged clusters have also been fully relaxed, taking as starting geometries those of the neutrals. In all cases the structural relaxation process immediately finishes using the same convergence criterion for atomic forces (10⁻² eV/Å) employed above for the neutral clusters. This behavior can be understood from the high stability of these clusters, which can accommodate an extra electron without experiencing any variation of the geometrical structure. This means that the vertical and adiabatic electron affinities are nearly the same. Confirmation of this effect is observed in the experiments. The measured adiabatic affinity of Al₁₀H₈ is 1.25 ± 0.15 eV, and the vertical detachment energy from the anionic cluster is 1.35 ± 0.05 eV. Our calculated affinity is 1.29 eV, very close to experiment.

The EAs shown in Fig. 3 have sizable values, between 0.58 and 2.06 eV. The lowest value (0.58 eV) corresponds to Al₆H₈, a highly symmetrical cluster with the largest H-L gap (2.81 eV). There is, in fact, a high degree of correlation between the H-L gap of the neutral clusters and their EAs: Large gaps correspond to low values of the EAs. The only exception to this trend occurs for the affinity of Al₁₀H₁₂. Another interesting feature is noticeable: Al₁₀H₈ marks a transition between a trend of increasing gaps as the cluster size increases, at its left in the figure, and decreasing gaps on its right. These features indicate that Al₁₀H₈ is the least reactive (or chemically most stable) cluster of this series. Recently, Kiran et al. calculated the H-L gaps of Al₆H₂, Al₇H, Al₁₀H₄, Al₁₀H₆, Al₁₁H, and Al₁₁H₂, and the values range between 1.4 and 1.9 eV. The Al₁₀H₄ and Al₁₁H₄ clusters studied here have larger gaps, between 1.35 and 2.8 eV, and will be chemically more stable.

Cluster binding energies per AlH unit have been calculated by subtracting the total energy of the AlₙHₙ₊₂ cluster from the sum of the energies of n AlH molecules and one H₂ molecule, and dividing the result by n

$$E_b/(\text{AlH unit}) = \frac{E(\text{H}_2) + nE(\text{AlH}) - E(\text{Al}_n\text{H}_{n+2})}{n}. \quad (1)$$

We have calculated this magnitude with the PBE and the hybrid PBE0 functionals. The results, shown in Fig. 4, reveal the same trend as the cluster size increases, with the PBE0 atomization energies displaying a constant shift of around 0.25 eV to higher binding. The trend is a weak increase in the cluster binding energy with increasing cluster size, perturbed by a sharp fall for Al₁₀H₇ and Al₁₀H₁₁.

B. Charge density analysis

According to the WM rules for electron counting applied to these systems with 2n+1 pairs of valence electrons, n of those pairs are required by the Al–H terminal bonds, leaving n+1 pairs for cage bonding. We now analyze how the calculated densities fit into this picture. Figure 5 shows maps of the total electronic charge density ρᵣₒₜ(ᵣ) of all the AlₙHₙ₊₂ clusters. A pronounced concentration of charge can be appreciated in all the Al–H bonds corresponding to top H atoms. This charge is a little displaced toward the H atoms. For Al₆H₂, Al₇H, Al₁₀H₄, Al₁₁H₆, and Al₁₁H₈, this indicates that n pairs of electrons are located just on the n vertices of each cluster, in agreement with the WM rules. As indicated above, in AlₙHₙ₊₂ with n=8, 9, 11, the number of H atoms on top positions is smaller than n. With respect to the other electrons, there is also a clear distinction between clusters with
In the previous subsections we have shown that the clusters $\text{Al}_n\text{H}_{n+2}$ fulfill the WM rule. That is, n hydrogen atoms are bonded in top positions to the Al atoms of the matrix, which is a polyhedron with n vertices. A pair of electrons is responsible for each of those strong H–Al bonds, making a total of n electron pairs. The other $n+1$ electron pairs form a cloud delocalized over the surface of the Al cage. In contrast, the clusters Al_8H_{10}, Al_9H_{11}, and $\text{Al}_{11}\text{H}_{13}$ do not fulfill those rules.

A key point in the fulfillment of the WM rule by the first group is the fact that the Al matrix of the hydrogenated cluster is a polyhedron with n vertices. One then can ask to what extent this polyhedral structure is due to the presence of the adsorbed H atoms. As discussed above, the structure of the Al matrix in Al_6H_6, Al_7H_7, and Al_8H_8 is practically the same as in the corresponding pure Al clusters. On the other hand, the Al matrix in Al_9H_9 and $\text{Al}_{10}\text{H}_{12}$ is substantially distorted with respect to the pure Al_7 and Al_{10} clusters. Actually, the distortion induced by the H atoms makes the Al cages in Al_7H_9 and $\text{Al}_{10}\text{H}_{12}$ more symmetrical, and this has a positive influence in the fulfillment of the WM rule. As for the question of why Al_6H_6, Al_7H_7, Al_8H_8, Al_9H_9, and $\text{Al}_{10}\text{H}_{12}$ fulfill the WM rule, but not the other three clusters, the only clear

C. Discussion of the WM rules

In the previous subsections we have shown that the clusters Al_6H_6, Al_7H_7, Al_8H_8, Al_9H_9, and $\text{Al}_{10}\text{H}_{12}$ of the $\text{Al}_n\text{H}_{n+2}$ family fulfill the WM rule. That is, n hydrogen atoms are bonded in top positions to the Al atoms of the matrix, which is a polyhedron with n vertices. A pair of electrons is responsible for each of those strong H–Al bonds, making a total of n electron pairs. The other $n+1$ electron pairs form a cloud delocalized over the surface of the Al cage. In contrast, the clusters Al_8H_{10}, Al_9H_{11}, and $\text{Al}_{11}\text{H}_{13}$ do not fulfill those rules.

A key point in the fulfillment of the WM rule by the first group is the fact that the Al matrix of the hydrogenated cluster is a polyhedron with n vertices. One then can ask to what extent this polyhedral structure is due to the presence of the adsorbed H atoms. As discussed above, the structure of the Al matrix in Al_6H_6, Al_7H_7, and Al_8H_8 is practically the same as in the corresponding pure Al clusters. On the other hand, the Al matrix in Al_9H_9 and $\text{Al}_{10}\text{H}_{12}$ is substantially distorted with respect to the pure Al_7 and Al_{10} clusters. Actually, the distortion induced by the H atoms makes the Al cages in Al_7H_9 and $\text{Al}_{10}\text{H}_{12}$ more symmetrical, and this has a positive influence in the fulfillment of the WM rule. As for the question of why Al_6H_6, Al_7H_7, Al_8H_8, Al_9H_9, and $\text{Al}_{10}\text{H}_{12}$ fulfill the WM rule, but not the other three clusters, the only clear
III. EXCITATION SPECTRUM

We have calculated the photoabsorption spectrum of the Al$_n$H$_{n+2}$ clusters using the TDDFT. In particular, we have used the formalism developed by Casida and Jamorski et al., implemented in the OCTOPUS code. In Casida’s matrix formulation, the self-consistent solution of the ground-state KS equations is first obtained. Transitions between occupied and unoccupied single-particle KS states may then be regarded as a first approximation to the excitations. Then, in a second step, the KS frequencies and optical intensities are corrected to become the correct optical transitions of the many-body system. In this step we have employed the adiabatic local density approximation (LDA) XC kernel. Although this procedure is not entirely consistent because the ground-state KS single-particle orbitals and energy eigenvalues correspond to a GGA functional, only adiabatic LDA kernels are currently implemented in OCTOPUS and other common TDDFT codes. In addition, Koponen et al. concluded that the LDA performs much better in the TDDFT, compared to static DFT. On the other hand, the most important requirement in obtaining a good photoabsorption spectrum is to have accurate single-particle energies and orbitals, obtained with a good static XC potential, while the kernel is less important. The paper by Castro et al. presents a discussion of the influence of different XC kernels in the calculation of the optical spectrum of clusters by TDDFT.

Each excitation peak of the calculated spectrum has been broadened by a Lorentzian profile to give the photoabsorption cross section

$$\sigma(\epsilon) = \sum_i \frac{A^2}{(\epsilon - \epsilon_i)^2 + A^2},$$

In this equation ϵ represents the energy, the ϵ_i are the discrete excitation energies obtained by the Casida method, and the value of the parameter A determines the full width at half maximum, set in this work equal to 0.05 eV, which is a value commonly used in order to simulate the available resolution in experiments of photoabsorption and photodissociative spectroscopy. This formalism has provided successful results in the calculation of the photoabsorption spectra of atoms, and different types of clusters, even at high excitation energies. Figure 7 shows the calculated photoabsorption cross sections of the neutral Al$_n$H$_{n+2}$ and anionic Al$_n$H$_{n+2}$ clusters for excitation energies up to 12 eV. As discussed above, the cluster anions have the structure of the neutrals. Absorption begins at lower energies in the charged clusters, and these have more features at low energies than the neutral clusters. This occurs because the neutral clusters have an even number of electrons and large H-L gaps (see Fig. 3), while the anionic clusters have odd number of electrons and the H-L gaps are much smaller (between 0.08 eV for Al$_6$H$_{11}$ and 0.63 eV for Al$_6$H$_8$). Returning to the neutrals, the absorption for the three clusters Al$_4$H$_6$, Al$_5$H$_7$, and Al$_6$H$_8$ begins at energies between 3 and 4 eV, and a trend can be appreciated of increasing absorption threshold from Al$_4$H$_6$ to Al$_5$H$_7$ and then to Al$_6$H$_8$. This is again correlated to the increasing H-L gap. For the rest the absorption threshold appears to decrease as a consequence of the decrease in the H-L gap. In the low energy region, the best defined absorption peaks occur for the most symmetrical clusters, Al$_4$H$_6$ and Al$_6$H$_8$. In the high excitation energy region all the spectra are very rich, and the spectra of the neutral and the corresponding charged species of the same size show clear similarities. All clusters have a wide absorption region between 6 and 11 eV. This absorption region suggests the possibility of delayed ionization and delayed emission of ions from the cluster following multiphoton absorption, as it has been observed and explained for metal carbohedrenes.
IV. SUMMARY AND CONCLUSIONS

Motivated by the interest on the Al$_n$H$_6$ cluster,9 we have studied the family of hydrogenated Al clusters Al$_{n+2}$H$_{n+4}$ with $n=4\sim11$ using the DFT with the GGA approximation for XC. All these clusters have $2n+1$ valence electron pairs. The main characteristic is that the clusters have sizable H-L gaps and, consequently, they are chemically very stable. The largest gap of 2.81 eV occurs for Al$_6$H$_8$. Five clusters of the family, Al$_8$H$_{10}$, Al$_8$H$_{12}$, Al$_9$H$_{10}$, Al$_9$H$_{12}$, and Al$_{10}$H$_{12}$, fulfill the WM rule, as earlier discovered for Al$_4$H$_6$ by Li et al.9 That is, in the Al$_{n+2}$H$_{n+4}$, the Al matrix forms a polyhedron of n vertices and n hydrogen atoms of the cluster form strong H-Al terminal bonds. One pair of electrons is involved in the formation of each of those bonds. The remaining $n+1$ electron pairs form a cloud delocalized over the surface of the Al cage. The other three clusters, Al$_{10}$H$_{10}$, Al$_{11}$H$_{11}$, and Al$_{11}$H$_{13}$ do not conform to this rule. The clusters fulfilling the WM rule have wider H-L gaps and are then chemically more stable (although the gap of Al$_{12}$H$_{14}$ is smaller than the gap of Al$_{12}$H$_{12}$, it is a local maximum with respect to neighbor clusters). The trends in the H-L gap have some reflection in the behavior of the photoabsorption spectrum. This has been calculated by the Casida method in the frame of TDDFT, using PBE single-particle energies and orbitals and an LDA XC kernel.

ACKNOWLEDGMENTS

This work was supported by MEC of Spain (Grant No.MAT2005-06544-C03-01) and by Junta de Castilla y León (Grant No. VA039A05). The Center for Atomic-scale Materials Design is funded by the Lundbeck Foundation. J.I.M. wishes to acknowledge additional support from the Danish Research Agency through Grant No. 26-04-0047 and the Danish Center for Scientific Computing through Grant No. HDW-0107-07. He also wishes to acknowledge hospitality and support of the Donostia International Physics Center.