Constitutive equation for polymer networks with phonon fluctuations

Hansen, Rasmus; Skov, Anne Ladegaard; Hassager, Ole

Published in:

Link to article, DOI:
10.1103/PhysRevE.77.011802

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Constitutive equation for polymer networks with phonon fluctuations

Rasmus Hansen,1 Anne Ladegaard Skov,2 and Ole Hassager3

1Center for Fluid Dynamics at DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
2The Danish Polymer Center, Department of Chemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
3Center for Fluid Dynamics at DTU & The Danish Polymer Center, Department of Chemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

(Received 13 September 2007; published 14 January 2008)

Recent research by Xing et al. [Phys. Rev. Lett. 98, 075502 (2007)] has provided an expression for the Helmholtz free energy related to phonon fluctuations in polymer networks. We extend this result by constructing the corresponding nonlinear constitutive equation, usable for entirely general, volume conserving deformation fields. Constitutive equations for the sliplink model and the tube model are derived and the three models are examined by comparison with each other and with data from Xu and Mark [Rubber Chem. Technol. 63, 276 (1990)] and Wang and Mark [J. Polym. Sci., Part B: Polym. Phys. 30, 801 (1992)]. Elastic moduli are derived for the three models and compared with the moduli determined from the chemical stoichiometry. We conclude that the sliplink model and the phonon fluctuation model are relatively consistent with each other and with the data. The tube model seems consistent neither with the other models nor with the data.

DOI: 10.1103/PhysRevE.77.011802

PACS number(s): 61.41.+e

I. INTRODUCTION

A polymer gel is a three-dimensional network of polymer chains joined at a certain number of permanent connection sites, called crosslinks. Furthermore, a network usually contains entanglements, which can be regarded as temporary connection sites, called partial chains, and Treloar among others [5], it has been known that rubber elasticity is associated with a suppression of entropy by the imposed deformation. Kuhn derived the following expression for the elastic (Helmholtz) free energy, up to an additive function of volume and temperature, of a rubber in a homogeneous deformation [5]:

$$A_0 = \frac{3}{2} N k_B T \langle |\mathbf{u}|^2 \rangle_u = \frac{1}{2} N k_B T E_0^2, \quad (1)$$

where $\langle \cdots \rangle_u$ denotes an average over the orientation of the three-dimensional unit vector $\mathbf{u}$, i.e., an isotropic distribution. $N_c$ is the number of chain segments between two neighboring connection sites, called partial chains, $k_B$ the Boltzmann constant, $T$ the absolute temperature, and $E_0 = \frac{\partial \mathbf{x}}{\partial x}$ the deformation gradient tensor, which is constant in a homogeneous deformation by definition. The 3-vectors $\mathbf{x}$ and $\mathbf{x}$ denote the position of a material particle before and after, respectively, deformation. This result is based on two main assumptions: (1) The distribution function of the end-to-end vector $r$ of a partial chain is Gaussian. (2) The connection sites $r_j$ move affinely with the macroscopic deformation, i.e., $r_j = E_j x_j$. We refer to Eq. (1) as the classical model, and to the corresponding network as an affine network. It has long been known that the classical model does not work well for large deformations.

As mentioned by Doi [5] the assumption of Gaussian statistics fails for large extensions, where the Langevin dependence of elongation on force becomes important. However, before this finite extensibility effect becomes important, two other neglected effects are dominant. These are the interactions between partial chains, and the fluctuations in the positions of the connection sites. To cope with entanglement interactions between polymer chains, Edwards and de Gennes introduced the tube model. This model implied another expression [5,6] of the elastic free energy given by

$$A_t = \frac{3}{2} N k_B T \frac{Z^2 a^2}{N b T} \langle |\mathbf{u}|^2 \rangle_u = \frac{3}{2} N k_B T Z_b \langle |\mathbf{u}|^2 \rangle_u. \quad (2)$$

Here $a$ is the tube radius, $N$ the number of Kuhn steps, $b$ the Kuhn step length, and $Z$ the number of elements of length $a$ spanning the central axis of the tube. Since $Z \approx N$, the prefactor increases linearly with $N$, which is known from experiments to be true. Note that the averaging in Eq. (2) occurs before the square, not after the square as in Eq. (1).

Ball et al. [7] introduced the concept of sliplinks, where entanglements are allowed to slide along the polymer strands, implying the elastic free energy

$$A_s = A_0 + \Delta A_s = \frac{1}{2} k_B T N_c \sum_i \lambda_i^2$$

$$+ \frac{1}{2} k_B T N_c \sum_i \left[ \frac{(1 + \eta \lambda_i^2)}{1 + \eta \lambda_i^2} + \ln(1 + \eta \lambda_i^2) \right]. \quad (3)$$

Here $N_c$ and $N_s$ are the total number of crosslinks and sliplinks, respectively. $\lambda_i$ are Cartesian extension ratios (strains) and $\eta$ is a model specific parameter measuring the freedom of a link to slide compared with the freedom of movement of a chain. Ball et al. [7] recommended the value $\eta=0.2343$. Note that the second term, i.e., the contribution from the sliplinks, is added to the classical energy term, since the sliplink nature describes entanglements only.

Fluctuations in the positions of the connection sites have historically been a great barrier towards a precise and physi-
ally reasonable model of rubber elasticity, also working for large deformations. Rubinstein and Panyukov [8] have combined the ideas of the confining tube and slippink models to a slip-tube model. More recent research by Xing et al. [1] provides another modification term to the classical model, based on incompressible phonon fluctuations of the polymer network:

$$\Delta p = \frac{4\pi}{\xi^3} V k_B T \ln(C_{\alpha\beta}(u_{\nu}u_{\nu}))_u.$$  \hspace{1cm} (4)

In this expression \(\xi\) is the typical mesh size of the polymer network, \(V\) the volume of the material, and \(C_{\alpha\beta}\) the Cauchy strain tensor defined below. In addition to deriving this expression for the stress in terms of the free energy density \(f\), where \(\delta\) is the unit tensor.

When inserting Eq. (1) into Eq. (5) we get the constitutive equation for the classical model,

$$\sigma_{ij}^{\text{classical}} = G_0 E_{in} E_{jn}.$$  \hspace{1cm} (6)

The elastic modulus is \(G_0 = n_c k_B T\), where we have defined the density of partial chains \(n_c = N_c/V\). Since stresses obtained by the slippink model (Sec. II B) and the phonon fluctuation model (Sec. II C) are added to the classical contribution, we define, respectively, \(G_0^s\) and \(G_0^p\).

A. Tube model

The constitutive equation for the tube model is obtained by inserting Eq. (2) into Eq. (5). Following Nielsen et al. [10] we get

$$\sigma_{ij}^{\text{tube}} = 3n_c k_B T Z (E \cdot u)_a \left( \frac{E_{in} u_{\nu} E_{jn} u_{\nu}}{|E \cdot u|} \right)_u,$$

$$\quad \quad \quad = \frac{15}{4} G_s (E \cdot u)_a \left( \frac{E_{in} u_{\nu} E_{jn} u_{\nu}}{|E \cdot u|} \right)_u,$$  \hspace{1cm} (7)

where the elastic modulus \(G_s = (4/5)n_c k_B T Z\).

B. Slippink model

The constitutive equation corresponding to the slippink energy term from Eq. (3) is derived next. First, we remember that the nonlinear Finger strain tensor \(B_{ij}\) and the Cauchy strain tensor \(C_{ij} = B_{ij}^{-1}\) are defined as follows:

$$B_{ij} = E_{in} E_{jn},$$

$$C_{in} B_{nj} = \delta_{ij}.$$  \hspace{1cm} (9)

The Finger strain tensor \(B_{ij}\) is in some literature called the left Cauchy-Green tensor, but the Cauchy strain tensor \(C_{ij}\) is not the same as the right Cauchy-Green tensor.

We also introduce the two strain invariants

$$I_1 = B_{ii} = \lambda_1^2 + \lambda_2^2 + \lambda_3^2,$$

$$I_2 = C_{ii} = \lambda_1^{-2} + \lambda_2^{-2} + \lambda_3^{-2},$$  \hspace{1cm} (11)

and the incompressibility condition

$$\lambda_1 \lambda_2 \lambda_3 = 1.$$  \hspace{1cm} (12)

Using the chain rule, we obtain

$$E_{in} \frac{\partial}{\partial E_{jn}} I_1 = 2B_{ij},$$

$$E_{in} \frac{\partial}{\partial E_{jn}} I_2 = -2C_{ij}.\)  \hspace{1cm} (14)

Hence in general for some function \(F(I_1, I_2)\) we have

$$E_{in} \frac{\partial}{\partial E_{jn}} F(I_1, I_2) = 2 \frac{\partial F}{\partial I_1} B_{ij} - 2 \frac{\partial F}{\partial I_2} C_{ij}.\)  \hspace{1cm} (15)

Denoting the energy density \(\Delta A_{\nu}/V\) by \(f_{\text{slip}}\) and the number density \(N_c/V\) by \(n_s\), we have from Eq. (3)

$$f_{\text{slip}} = \frac{(1 + \eta)(1 + \eta^2 I_1 + \eta^2 I_2 + \eta^3)}{2} + \frac{1}{2} \ln[(1 + \eta^2 I_1)(1 + \eta^2 I_2)] \ln[(1 + \eta^2 I_1)(1 + \eta^2 I_2)].$$  \hspace{1cm} (16)

Rewriting in terms of strain invariants, we obtain

$$f_{\text{slip}} = \frac{(1 + \eta)(I_1 + 2\eta I_2 + 3\eta^2)}{2} + \frac{1}{2} \ln(I_1 + \eta I_2 + \eta^2 I_2 + \eta^3).\)  \hspace{1cm} (17)

From Eq. (15) we can write

$$\sigma_{ij}^{\text{slip}} = 2 \frac{\partial f_{\text{slip}}}{\partial I_1} B_{ij} - 2 \frac{\partial f_{\text{slip}}}{\partial I_2} C_{ij}.\)  \hspace{1cm} (18)

By differentiation we obtain

$$\frac{\partial}{\partial I_1} f_{\text{slip}} = \frac{(1 + \eta)}{2} - \eta^2 I_2 - 2 \eta^3 + \eta \frac{\eta^2}{2X},$$

$$\frac{\partial}{\partial I_2} f_{\text{slip}} = \frac{(1 + \eta)}{2} 2 \eta + \eta^2 I_1 - \eta^4 + \frac{\eta^2}{2X},\)  \hspace{1cm} (19)

where \(X = 1 + \eta I_1 + \eta^2 I_2 + \eta^3.\)
Specializing to shear deformation of shear magnitude \( \gamma \), we find
\[
\sigma_{xy} = n k_B T \gamma \frac{(1 + \eta)^2 + \eta^2 \gamma^2}{[(1 + \eta)^2 + \eta^2 \gamma^2]},
\]
and
\[
N_1 = \sigma_{xx} - \sigma_{yy} = \gamma \sigma_{xy},
\]
\[
N_2 = \sigma_{yy} - \sigma_{zz} = -n k_B T \gamma \eta \frac{2(1 + \eta) + \eta \gamma^2}{[(1 + \eta)^2 + \eta^2 \gamma^2]},
\]
as obtained by Oberdisse et al. [11]. From the zero strain limit of the shear stress expression, we obtain the elastic modulus
\[
G_s = \frac{n k_B T}{(1 + \eta)^2}.
\]

C. Phonon fluctuation model

To obtain the general constitutive equation for polymer networks with phonon fluctuations, one must insert the free energy from Eq. (4) into Eq. (5):
\[
\sigma_{ij} = 2 \pi k_B T \xi^3 \left\{ E_{in} \frac{\partial}{\partial E_{in}} \ln(C_{\alpha \beta \mu \nu}) \right\}_{\text{u}}
- 2 \pi k_B T \xi^3 \left\{ E_{in} \frac{\partial}{\partial E_{in}} \frac{C_{pq \mu \nu}}{C_{\alpha \beta \mu \nu}} \right\}_{\text{u}}.
\]

The derivative in the numerator is carried out:
\[
E_{in} \frac{\partial}{\partial E_{in}} C_{pq} = E_{in} \frac{\partial}{\partial E_{in}} B_{pq}^{-1} = - C_{pj} \delta_{iq} - C_{ij} \delta_{pq}.
\]
Hence
\[
E_{in} \frac{\partial}{\partial E_{in}} C_{pq \mu \nu} = - C_{pj} \delta_{iq} \mu \nu - C_{ij} \delta_{pq \mu \nu}
- C_{pj} \mu \nu = - C_{pq \mu \nu} \text{u},
\]
The Cauchy strain tensor is symmetric by construction, which implies
\[
E_{in} \frac{\partial}{\partial E_{in}} C_{pq \mu \nu} \text{u} = - 2 C_{pq \mu \nu} \text{u} = - 2 \sigma \cdot \text{u}.
\]

Recognizing the denominator inside the brackets in Eq. (25) as the double dot product, we arrive at the central result of the paper: the stress-strain constitutive equation corresponding to incompressible phonon fluctuations.
\[
\sigma_{ij} = - 4 \pi k_B T \xi^3 \left\{ \frac{C_{pq \mu \nu} \text{u}}{C_{\alpha \beta \mu \nu}} \right\}_{\text{u}} = - 4 \pi k_B T \xi^3 \left\{ \frac{\sigma \cdot \text{u}}{\sigma} \right\}_{\text{u}}.
\]
This expression is evaluated numerically in simple shear for \( N_1, N_2, \) and \( \sigma_{xy} \), see Fig. 1. To second order in the shear \( \gamma \), the normal stress ratio \( \Psi = N_2 / N_1 = -5/7 \).

FIG. 1. Dimensionless normal stress differences \( N_1 / G_p \) and \( N_2 / G_p \) and shear stress \( \sigma_{xy} / G_p \) from phonon fluctuations in simple shear deformation as a function of the shear magnitude \( \gamma \). Numerical evaluations of Eq. (29) are plotted along with second order expansions, \( N_1 / G_p = \gamma^2 \) and \( N_2 / G_p = -5/7 \gamma^2 \), and asymptotics, \( N_1 / G_p 5 \) and \( N_2 / G_p 5 \) (dashed lines).

We now proceed to derive the elastic modulus \( G_p \) for the phonon fluctuation model. For infinitesimal shear strain we set
\[
C_{\mu \nu} = \delta_{\mu \nu} - \epsilon_{\mu \nu}.
\]
and expand to first order in $\epsilon_{mn}$:

$$\left\langle \frac{C_{\alpha\beta}u_{\alpha}u_{\beta}}{C_{\alpha\beta}u_{\alpha}u_{\beta}} \right\rangle_u = \frac{1}{1 - \epsilon_{\alpha\beta}} \left( \delta_{\alpha\beta} + \epsilon_{\alpha\beta} + \epsilon_{\alpha\beta}^2 \right).$$

Using the identities

$$\left\langle u_{\alpha}u_{\beta} \right\rangle_u = \frac{1}{3} \delta_{\alpha\beta},$$

$$\left\langle u_{\alpha}u_{\beta}u_{\gamma}u_{\delta} \right\rangle_u = \frac{1}{3} \left( \delta_{\alpha\beta} \delta_{\gamma\delta} + \delta_{\alpha\gamma} \delta_{\beta\delta} + \delta_{\alpha\delta} \delta_{\beta\gamma} \right),$$

we get

$$\left\langle \frac{C_{\alpha\beta}u_{\alpha}u_{\beta}}{C_{\alpha\beta}u_{\alpha}u_{\beta}} \right\rangle_u = \frac{1}{3} \delta_{ij} - \frac{1}{5} \epsilon_{ij} + O(\epsilon_{ij}^2).$$

Hence the elastic modulus is given by $G_p = 4\pi k_B T \xi^3/5$. Note that $G_p$ and $G_0$ are not entirely independent, since the mesh size $\xi$ depends on the crosslink density $n_c$. However, following Xing et al. [1], we use both as free fitting parameters.

### III. STRESS-STRAIN CURVES AND DATA

Uni- and bi-axial deformation is characterized by the strain $\lambda$, where $\lambda > 1$ and $\lambda < 1$ correspond to uni- and bi-axial deformation, respectively. The deformation gradient tensor is given by $E = \text{diag}(\lambda^{-1/2}, \lambda^{-1/2}, \lambda)$. In uniaxial deformation ($\lambda > 1$) a sphere is deformed into a prolate ellipsoid, while in biaxial deformation ($\lambda < 1$) the sphere is deformed into an oblate ellipsoid.

In simple shear the characterization parameter is $\gamma$, and the deformation gradient tensor is given by

$$E = \begin{pmatrix} 1 & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$ 

Planar elongation is characterized by the parameter $\alpha$, and the deformation gradient tensor is given by $E = \text{diag}(\alpha, 1, \alpha^{-1})$. The considered material is assumed incompressible in all the considered models, i.e., det $E = 1$.

In order to obtain parameters, we make a fit of the three considered models in uni- and bi-axial deformation to data from Xu and Mark [2], in the Mooney-Rivlin plot in Fig. 2 (a). To test the theories, we compare the models with data from the same network [3] in planar elongation, using the same set of parameters, Data from Xu and Mark [2] and Wang and Mark [3] (unit: $10^6$ Pa). In order for the two data sets to predict the same modulus for $\alpha = a_1 = 1$ we have scaled the data for planar elongation with a factor of 0.9545. This corresponds to a temperature variation of approximately 14 K. Parameters are presented in Table 1.

![Graph](image)

**FIG. 2.** (a) Fit of the phonon fluctuation model, the sliplink model, and the tube model to data for uni- and bi-axial deformation. The temperature is $T = 298$ K. (b) Comparison of the three models with data from the same network in planar elongation, using the same set of parameters. Data from Xu and Mark [2] and Wang and Mark [3] (unit: $10^6$ Pa). In order for the two data sets to predict the same modulus for $\alpha = a_1 = 1$ we have scaled the data for planar elongation with a factor of 0.9545. This corresponds to a temperature variation of approximately 14 K. Parameters are presented in Table 1.

**TABLE 1.** Parameter values used to fit models to data in Fig. 2 (unit: $10^6$ Pa).

<table>
<thead>
<tr>
<th>Model</th>
<th>Elastic modulus</th>
<th>Affine (classical)</th>
<th>Additional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube</td>
<td>$G_t = 4n_c k_B T$</td>
<td>$0.13$</td>
<td>$0.1053$</td>
</tr>
<tr>
<td>Sliplink</td>
<td>$G_s = n_c k_B T (1 + \eta)^2$</td>
<td>$0.0683$</td>
<td>$0.0400$</td>
</tr>
<tr>
<td>Phonon</td>
<td>$G_p = 4\pi k_B T \xi^3/5$</td>
<td>$0.0700$</td>
<td>$0.0322$</td>
</tr>
<tr>
<td>Chemistry</td>
<td>$G_0 = 0.114$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
network expression. It seems less obvious how the parameter $Z$ in the tube model can be predicted from the stoichiometry [12,13]. The molar mass between crosslinks is 21 kg/mol, while the entanglement molar mass is 13 kg/mol [14]. This could suggest a number $Z$ in the range 1 to 2, which is in reasonable agreement with Table I. Keep in mind, however, the nonlinear behavior of the tube model is inconsistent with the data.

In closing we compare the three models in large deformations outside the experimentally investigated range. Figure 3 (a) shows the normal stress ratio $\Psi = N_2 / N_1$ in simple shear. In (b) we compare the models in planar elongation, fitting the tube model and the sliplink model to the phonon fluctuation model. In (c) we compare the models in simple shear. The sliplink model and the phonon fluctuation model produce very similar results. The tube model deviates markedly from the two other models. The existence of the second normal stress difference is well-documented for polymeric liquids, and the tube model has formed the basis for the pioneering Doi-Edwards model for entangled polymer melts [5,6].

Planar elongation and simple shear differ only by a rotation of coordinates, i.e., the stress components for planar elongation $[\cdots]_p$ and simple shear $[\cdots]_s$ are related by the formula

$$\frac{[\sigma_{xx} - \sigma_{zz}]_s}{\sigma^2 - \sigma^2} = \frac{[\sigma_{xx}]_p}{\gamma} = \frac{[\sigma_{xy}]_p}{\gamma^2},$$

(31)

provided that the two deformation parameters are related by

$$\alpha^2 = 1 + 1/2 \gamma^2 + \gamma \sqrt{1 + 1/4 \gamma^2}.$$  

(32)

This result is obtained by diagonalizing the Finger strain tensor $B_{ij}$ for simple shear.

IV. CONCLUSIONS

The phonon fluctuation model is capable of fitting simultaneously uniaxial, biaxial, and planar extension. At the same time, however, the data may be fitted equally well by the sliplink model, which is based on very different physical ideas. The phonon fluctuation model therefore offers an alternative physical explanation of the deviations from the classical behavior in rubber elasticity. Both models require that the modulus from the classical term, as well as the moduli from the additional terms, are retained as free fitting parameters.

The tube model does provide clear deviations from classical behavior in a Mooney plot. Uniaxial extension and planar elongation are qualitatively correct, while the model fails to give a maximum in biaxial compression.

ACKNOWLEDGMENTS

A. L. Skov is grateful for the financial support from the Danish Research Council for Technology and Production Sciences, the Danish Polymer Center is supported by a grant from The Danish Research Council for Technology and Production Sciences, and Fluid-DTU is supported from the Danish National Research Foundation.