Design of Cu8Zr5-based bulk metallic glasses

Published in:
Applied Physics Letters

Link to article, DOI:
10.1063/1.2213020

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Design of Cu₈Zr₅-based bulk metallic glasses

L. Yang
Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China

J. H. Xia, Q. Wang, and C. Dong
State Key Laboratory of Materials Modification, Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China

Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China

K. Klementiev, K. Saksl, H. Franz, and J. R. Schneider
HASYLAB am DESY, Notkestrasse 85, D-22603 Hamburg, Germany

L. Gerward
Department of Physics, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 7 March 2006; accepted 28 April 2006; published online 14 June 2006)

Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu–Zr binary system, where we have demonstrated the existence of Cu₉Zr₅icosahedral clusters in Cu₆₁Zr₃₈.₂, Cu₉Zr₃₆, and Cu₄₅Zr₃₅.₅ amorphous alloys. Furthermore, ternary bulk metallic glasses can be developed by doping the basic Cu–Zr alloy with a minority element. This hypothesis was confirmed in systems (CuₓZr₃₈.₂)₀ₓ−₀.₆₇Nbₓ, where x = 1.5 and 2.5 at. %, and (CuₓZr₃₈.₂)₀ₓ−₀.₆₇Snₓ. The present results may open a route to prepare amorphous alloys with improved glass forming ability. © 2006 American Institute of Physics. [DOI: 10.1063/1.2213020]

Since the discovery of glassy systems, based on multicomponent alloys, in the early 1990s, bulk metallic glasses (BMGs) have been extensively studied because certain mechanical properties, such as strength, can be significantly improved over their crystalline counterparts.¹⁻¹¹ BMGs produced so far usually contain three or more elements.¹⁻³ Until now, complex compositions have been considered necessary in order to inhibit crystallization of the liquid phase during cooling of the melt. However, simpler systems should be of great interest, fundamentally as well as technologically, since they would facilitate the atomic-structure determination for a given BMG, which has been a long-standing problem.¹²⁻²⁴ Originally, the dense-random-packed model was used to describe metallic glasses.²⁵ This model is based on the assumption that the glass consists of a random arrangement of spherical atoms (hard spheres) of each element. However, it has also been pointed out that localized, directional chemical bonding and the formation of groups of atoms are relevant factors to theories of glass formation and stability.²⁶ The local structure is well defined and similar to that of the crystalline form of the material. Recently, a topological model for metallic glass formation was proposed.²⁷⁻²⁸ According to that model, a solute occupying either substitutional or interstitial sites in the host lattice can destabilize the lattice by producing a critical internal strain. Besides the structural models mentioned above, several criteria for structural stability of a BMG have been suggested: (1) large value of the reduced glass transition temperature T_g/T_x, where T_x is the glass transition temperature and T_g is the liquidus temperature;²⁹ (2) three empirical rules for a large supercooled liquid region: (a) multicomponent system, (b) significant differences in atomic size, and (c) negative heats of mixing among the main constituent atoms;¹³ (3) high gamma value, γ = T_x/(T_x + T_y), where T_x is crystallization temperature;³⁰ (4) interaction between the Fermi surface and the Brillouin zone in a nearly-free-electron model;³¹ (5) the critical concentration of a solute element required for amorphization decreases, reaches a minimum, and then increases with increasing ratio between the size of the solute and the solvent atoms;²⁷⁻³³ (6) there is an optimum ratio R between the size of the solute and the average size of the surrounding solvent atoms for dense packing.²⁷⁻³⁴ In spite of the criteria mentioned above, the design of alloys with a high glass forming ability (GFA) remains to a large extent unpredictable due to lack of understanding of the local atomic structure. Although polyhedral clusters have been revealed in some metallic glasses,¹²⁻²⁰ more efforts are still needed to uncover the atomic structure of a given BMG and to predict compositions with high GFA. In this letter, we report a method of designing appropriate polyhedral units to simulate the local atomic structure of binary Cu–Zr amorphous alloys. Our method predicts the formation of Cu₉Zr₅-based BMGs, in which the polyhedral units are indeed experimentally detected.

We have chosen the Cu–Zr binary system as a prototype because of three reasons: (1) it has a wide composition range forming metallic glasses, (2) BMGs can be formed in this system, and (3) its phase diagram is known. There are several intermetallic compounds, Cu₅Zr, Cu₅Zr₁₄, Cu₉Zr₃, Cu₁₀Zr₇, CuZr, and CuZr₂. The Wyckoff sites of Cu and Zr in these compounds are listed in Pearson’s handbook.³⁶ Taking
that the average radius of the shell atoms is

Suppose that the radius of the center atom in a cluster is

In order to select appropriate clusters as basic units for the

packing. Clusters with less than ten atoms were not consid-

ered in the present work since

should be within 10% from the optimum value

In the fitting process, the FEFF-8 code

was used to calculate scattering amplitudes and phases.

In Fig. 2 we show Cu and Zr K-edge EXAFS spectra for

as-spun Cu_{61.5}Zr_{38.5}, Cu_{64}Zr_{36}, and Cu_{64.5}Zr_{35.5} metallic glasses. A Cu_{9}Zr_{4} icosahedral cluster with a Cu atom at the center position and a Cu_{9}Zr_{5} icosahedral cluster with a Zr atom at the center (Fig. 3) were designed as models for the fits to the experimental Cu and Zr K-edge spectra, respectively. Cu–Zr and Zr–Cu bond distances were forced to be equal during the fitting. As shown in Fig. 2, the observed Cu and Zr K-edge spectra in k and r spaces are well described by the fitting curves. The EXAFS fitting parameters are given in Table I. It is clear that the Cu center atom is indeed surrounded by about five Zr and seven Cu atoms, forming a Cu_{9}Zr_{5} icosahedral cluster, although the Cu_{9}Zr_{4} model was used as the initial input. Slight differences between the Cu–Cu and Cu–Zr bond lengths indicate a distorted icosahedral cluster with a Cu atom at the center site. On the other hand, the Zr atom is found to have only about four Cu atoms

The x-ray diffraction (XRD) patterns for the as-spun Cu–Zr metallic glasses and as-cast 3 mm (Cu_{64.5}Zr_{35.5})_{97.5}Nb_{2.5} and (Cu_{64.5}Zr_{35.5})_{98}Sn_{2} BMG rods.

FIG. 1. X-ray diffraction patterns for the as-spun Cu–Zr metallic glasses and as-cast 3 mm (Cu_{64.5}Zr_{35.5})_{97.5}Nb_{2.5} and (Cu_{64.5}Zr_{35.5})_{98}Sn_{2} BMG rods.
as nearest neighbors, while the Zr–Zr coordination number is about 8. The results above imply that Cu atoms are situated at the center sites of Cu$_6$Zr$_5$ icosahedral clusters, while the Zr atoms are located at the shell sites. This is understandable, since the radius of the Cu atom (1.28 Å) is less than the radius of the Zr atom (1.61 Å). Various ways of combining Cu-centered Cu$_6$Zr$_5$ icosahedral clusters may result in slight differences in the composition of the alloy. Thus, our results strongly support the hypothesis above that the atomic structure of Cu$_6$Zr$_5$ icosahedral clusters may be made up of Cu$_6$Zr$_5$ icosahedral clusters.

Adding a third element, having a larger atomic radius than Cu, at shell sites of the Cu$_6$Zr$_5$ icosahedral clusters should result in a higher R value and thereby a higher GFA. Consequently, one would expect a whole class of Cu$_6$Zr$_5$-based BMGs according to our model. In order to test this hypothesis, we have selected Nb (atomic radius of 1.47 Å) and Sn (atomic radius of 1.51 Å) as the minority elements and prepared amorphous alloys according to the formulas (Cu$_{0.618}$Zr$_{0.382}$)$_{0.98}$Sn$_{0.01}$Nb$_{0.01}$, (Cu$_{0.618}$Zr$_{0.382}$)$_{0.97}$Sn$_{0.02}$, and (Cu$_{0.618}$Zr$_{0.382}$)$_{0.96}$Sn$_{0.04}$. It is found that BMG rods with a diameter of 3 mm could indeed be produced (Fig. 1) by copper mold.

In conclusion, basic polyhedral clusters have been derived for intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, BMGs can be formed. This strategy was verified in the Cu–Zr binary system, where we have demonstrated the existence of Cu$_6$Zr$_5$ icosahedral clusters in Cu$_{61.8}$Zr$_{38.2}$, Cu$_{64}$Zr$_{36}$, and Cu$_{64.4}$Zr$_{35.5}$ amorphous alloys. Furthermore, ternary BMGs can be developed by doping the basic Cu–Zr alloy with a minority element. This hypothesis was confirmed in systems (Cu$_{0.618}$Zr$_{0.382}$)$_{1-x}$Nb$_x$, where $x = 1.5$ and 2.5 at. %, and (Cu$_{0.618}$Zr$_{0.382}$)$_{1-x}$Sn$_x$. The present results may open a route to prepare amorphous alloys with improved GFA.

The authors would like to thank HASYLAB in Hamburg, Germany, BSRF in Beijing and NSRL in Hefei, P.R. China, MAX-Lab in Lund, Sweden, APS in Chicago, U.S.A., and SPring-8 and KEK in Japan for use of the synchrotron radiation facilities. Financial support from the National Natural Science Foundation of China (Grants Nos. 50341032, 50425102, 50271012, and 50401020), the Ministry of Education of China (Grant Nos. 200507+10 and 2005-55), Zhejiang University, and Dalian University of Technology is gratefully acknowledged.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Alloy & Atom at center & \text{Cu} & \text{Zr} & \text{Cu} & \text{Zr} \\
& & \text{Cu} & \text{Zr} & \text{Cu} & \text{Zr} \\
\hline
Cu$_{61.8}$Zr$_{38.2}$ & Cu & 2.53(2) & 2.68(7) & 7(2) & 5(2) \\
& Zr & 2.68(7) & 3.01(3) & 4(2) & 8(2) \\
\hline
Cu$_{64}$Zr$_{36}$ & Cu & 2.53(2) & 2.69(7) & 7(2) & 5(3) \\
& Zr & 2.69(7) & 3.01(3) & 4(2) & 8(2) \\
\hline
Cu$_{64.4}$Zr$_{35.5}$ & Cu & 2.53(2) & 2.69(7) & 7(3) & 5(3) \\
& Zr & 2.69(7) & 3.00(3) & 4(2) & 8(2) \\
\hline
\end{tabular}
\caption{EXAFS results. N is the coordination number, r_{ij} where i and j are Cu and/or Zr, is the interatomic distance, and σ^2 is the mean-square relative displacement. In order to minimize the number of parameters, a single energy shift was varied for each absorption edge.}
\end{table}