Thermoinduced magnetization and uncompensated spins in antiferromagnetic nanoparticles

Madsen, Daniel Esmarch; Mørup, Steen

Published in: Physical Review B Condensed Matter

Link to article, DOI: 10.1103/PhysRevB.74.014405

Publication date: 2006

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Thermoinduced magnetization and uncompensated spins in antiferromagnetic nanoparticles

Daniel Esmarch Madsen* and Steen Mørup†

Department of Physics, Bldg. 307, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

(Received 22 March 2006; revised manuscript received 1 June 2006; published 10 July 2006)

We have investigated the combined effect of an uncompensated moment and the thermoinduced magnetization on the initial susceptibility of nanoparticles of antiferromagnetic materials. We find that for nanoparticles with small values of the anisotropy and exchange fields, the thermoinduced magnetization may be predominant at finite temperatures. In other cases the uncompensated moment may be predominant.

DOI: 10.1103/PhysRevB.74.014405

PACS number(s): 75.75.-a, 75.50.Ee, 75.50.Tt

I. INTRODUCTION

The magnetic properties of antiferromagnetic nanoparticles have in recent years received much attention. Unlike their bulk counterparts, such nanoparticles possess a finite, albeit small, magnetic moment, originally attributed by Néel1 to the uncompensated spins present in nanoparticles due to their finite size.

Recently, the existence of another contribution to the magnetic moment of nanoparticles has been suggested.2,3 This so-called thermoinduced magnetic moment is due to thermally induced spin wave excitations in the form of a uniform precession mode. When this mode is excited, the two sublattices are not strictly antiparallel, and the angle between them increases with increasing excitation energy, leading to a magnetic moment that increases with increasing temperature. Subsequent Monte Carlo simulations of the magnetization of antiferromagnetic nanoparticles support this model.4

In several experimental studies of antiferromagnetic nanoparticles, an anomalous increase of the magnetic moment with increasing temperature has in fact been reported and this seems to give experimental support for the existence of thermoinduced magnetization.5 However, Silva et al.5,6 have pointed out that if the distribution of magnetic moments due to uncompensated spins is disregarded in the analysis of magnetization curves of samples of antiferromagnetic nanoparticles, one may observe an apparent increase of the magnetic moment and therefore, i.e., jumps between the two minima at θ=0 and θ= π) also take place. This superparamagnetic relaxation can be observed above a critical temperature, known as the blocking temperature (T_B), where the time between successive magnetization reversals becomes comparable to the timescale of the experimental method.

As pointed out previously3 the uniform precession, which is the magnetic anisotropy constant, V is the volume of the particle, and θ is the angle between the anisotropy axis and the (sublattice) magnetization. At low temperatures, the (sublattice) magnetization will fluctuate around the local energy minima, a process termed collective magnetic excitations.11 As the temperature is increased, magnetization reversals (i.e., jumps between the two minima at θ=0 and θ= π) also take place. This superparamagnetic relaxation can be observed above a critical temperature, known as the blocking temperature (T_B), where the time between successive magnetization reversals becomes comparable to the timescale of the experimental method.

The collective magnetic excitations may be thought of as a uniform precession of the spins combined with transitions between precession states with different precession angles. As pointed out previously3 the uniform precession, which can be considered as a spin wave with wave vector q=0, is particularly prominent in nanoparticles. Furthermore, in the antiferromagnetic case it has been shown12,13 that the two sublattices are not exactly antiparallel during the precession.

One can take the following two-sublattice antiferromagnetic nanoparticle, with sublattice magnetic moments μ_1 and μ_2 (the magnitudes of which are slightly different from the average value μ_S because of uncompensated spins) as shown in Fig. 1. We here assume that the uncompensated spins are coupled through the ordinary exchange interaction to the other spins, such that their presence is expressed as a difference between |μ_1| and |μ_2|, i.e. we write the magnetic moment due to the uncompensated spins, μ_u, as |μ_u|=|μ_1|−|μ_2|. For simplicity, we further assume that μ_1 and μ_2 do not depend on temperature, as we are only considering temperatures well below the Néel temperature, i.e., we neglect the...
influence of spin waves with $q \neq 0$. The precession of the two sublattice magnetic moments around the z-axis is described by the angles θ_1 and θ_2, differing slightly from the average value θ. The difference between the two angles is denoted $\theta_q = \theta_2 - \theta_1$ such that the resulting magnetic moment in the z-direction may be written as

$$\mu^z = \mu_1 \cos \theta - \mu_2 \cos \theta_2 \approx \mu_0 \cos \theta - \mu_1 \sin \theta \sin \theta_q$$

(2)

where we have assumed that θ_q is small.

A. The modes of uniform precession

In order to proceed, one must analyze in some detail the precession modes of such a system. In a perfect antiferromagnetic material the relationship between the precession angles of the two sublattices can be written as 12,13

$$\frac{\sin \theta_1}{\sin \theta_2} = 1 \pm \delta.\quad (3)$$

Here $\delta = \sqrt{2B_s/B_E}$, where $B_s = \mu_0 \lambda_{12} \mu_S/V$ is the exchange field, λ_{12} is the exchange constant, and $B_E = KV/\mu_S$ is the anisotropy field.

In order to extend the calculation to a particle with a small uncompensated moment, we treat the system as that of a ferrimagnet, but in the limit where the difference between the sublattice magnetic moments is very small. In such a case, following the derivation by Wangsness14,15 where the magnetic moments are treated as classical vectors, one may write the equations of motion for each of the two sublattice magnetic moments as

$$\frac{\partial \tilde{\mu}_i}{\partial t} = \gamma (\tilde{\mu}_i \times \tilde{B}_{m,i}),\quad (4)$$

where $i \in (1, 2)$, γ is the gyromagnetic ratio, and $\tilde{B}_{m,i}$ is the field acting on each sublattice. The contributions to this field include the anisotropy field \tilde{B}_a, the exchange field \tilde{B}_E, and an applied field, \tilde{B}_{app}. The anisotropy is assumed to be uniaxial following Eq. (1), the easy axis coinciding with the z-axis, along which the external magnetic field is also applied. Further, the particles considered here have a very small net magnetization such that the demagnetization field may be ne-glected, and in this case the field can be expressed as

$$\tilde{B}_{m,1} = \tilde{B}_{app} - \mu_0 \lambda_{12} \frac{\mu_2}{V} + \tilde{B}_a,$$

(5)

$$\tilde{B}_{m,2} = \tilde{B}_{app} - \mu_0 \lambda_{12} \frac{\mu_1}{V} - \tilde{B}_a.$$

(6)

In the calculation it is assumed that the precession angles are small, i.e., $\cos \theta \approx 1$. Four different modes are found with frequencies pairwise of equal magnitude, i.e., two distinct modes exist (in the following denoted by $+$ and $-$), and are given by

$$\frac{\omega_k}{\gamma} = \frac{\xi B_{app}}{2} \pm B_E \sqrt{\frac{\delta^4}{4} + \delta^2 \left(1 + \frac{\xi}{2}\right)^2 + \frac{\xi^2}{4}},\quad (7)$$

where $\xi = \mu_2/\mu_1$. The dependence of ω_k on ξ is illustrated in Fig. 2.

For the precession angles we find in the limit where $\xi \ll \delta$

$$\frac{\mu_1 \sin \theta_1}{\mu_2 \sin \theta_2} = 1 + \frac{\xi}{2} \pm \delta\quad (8)$$

which, when compared with Eq. (3), shows that the uncompensated moment itself will have an effect on the relative precession angles.

By expressing the angles θ_1 and θ_2 in terms of θ and θ_q one finds

$$\frac{\sin \theta_1}{\sin \theta_2} = 1 + \cot \theta \sin \theta_q.\quad (9)$$

When inserting this into Eq. (8) and solving for $\sin \theta_q$ one obtains

$$\sin \theta_q = \left(\frac{1}{2} \frac{\mu_2}{\mu_1} \cos \theta - \frac{\mu_0}{\mu_1} \frac{\delta - \mu_2}{\mu_1} \tan \theta\right) \tan \theta.\quad (10)$$

Inserting this in Eq. (2) gives
after averaging over the fast precessional motion.

B. The initial susceptibility

Two precession states have been found, and with two possible orientations with respect to B_{app} one is left with four possible combinations. Hence, using Boltzmann statistics one obtains for a particle in thermal equilibrium, i.e., for $T > T_B$

$$
\langle \mu_i \rangle_T = \frac{1}{Z} \sum_\theta P(\theta) \times (\mu_{+,i} [e^{-\mu_i B_{\text{app}} T} - e^{\mu_i B_{\text{app}} T}] + \mu_{-,i} [e^{-\mu_i B_{\text{app}} T} - e^{\mu_i B_{\text{app}} T}]),
$$

(12)

where Z is the partition function

$$
Z = e^{-\mu_{+,i} B_{\text{app}} T} + e^{\mu_{+,i} B_{\text{app}} T} + e^{-\mu_{-,i} B_{\text{app}} T} + e^{\mu_{-,i} B_{\text{app}} T}
$$

(13)

and $P(\theta)$ is the probability of finding a precession state with angle θ. In the following we consider the initial susceptibility χ_i for a single particle, i.e., the limit where $\mu_{\pm} B_{\text{app}} \ll k_B T$. In this case $Z \approx 4$, and we find from Eq. (12)

$$
\chi_i = \frac{1}{2} \frac{\mu_0}{V k_B T} \sum_\theta P(\theta) (\mu_{+,i}^2 + \mu_{-,i}^2),
$$

(14)

When inserting Eq. (11) in Eq. (14) we obtain

$$
\chi_i = \frac{\mu_0}{V k_B T} \sum_\theta P(\theta) \times \left(\frac{4 \mu_0^2 \cos^2 \theta}{2 - \sin^2 \theta} + \frac{4 \delta \mu_0^2 \cos \theta}{2 \cos^2 \theta + 1}\right).
$$

(15)

Using that $\theta_1 = \theta_2 = \theta$ we obtain by use of Eq. (1)

$$
P(\theta) = e^{-\alpha \sin^2 \theta} \sum_\theta e^{-\alpha \sin^2 \theta}.
$$

(16)

where $\alpha = KV/k_B T$. Inserting this into (15) and assuming that the precession states are close-lying, such that the sums may be turned into integrals, we finally obtain

$$
\chi_i = \frac{\mu_0}{V} \int_0^{\pi/2} e^{-\alpha \sin^2 \theta} \left[4 \cos^2 \theta \sin \theta (2 - \sin^2 \theta) \right] d\theta
$$

$$
+ 4 \delta \mu_0^2 \int_0^{\pi/2} e^{-\alpha \sin^2 \theta} \left[\cos \theta \sin \theta (2 \cos^2 \theta + 1) \right] d\theta.
$$

(17)

If we assume, as in the previous derivations, that the temperature is low such that only the lowest precession states are occupied, we may write

$$
\chi_i \approx \frac{\mu_0}{V} \left[\frac{2 \cos \theta}{2 - \sin^2 \theta} \pm 2 \delta \mu_0 \frac{ \cos \theta}{2 \cot^2 \theta + 1} \right]
$$

(11)

According to Eq. (19) the contribution due to the thermoinduced magnetization will be predominant for $T > T_B \approx \mu_0 B_{B_{\text{app}}} / 2 k_B$, thus a particle in which the thermoinduced contribution is measurable must have small exchange and anisotropy fields and the uncompensated moment should not be too large. We have simulated the initial susceptibility of nanoparticles by use of Eq. (19). We have used $V = 10^{-14} \text{ m}^3$, $B_{\text{app}} = 0.01 \text{ T}$, and $T_B = 300 \text{ K}$. These values are of the same order of magnitude as those of, for example, ferritin and typical NiO nanoparticles. Magnetization curves for three different values of the uncompensated moment, $\mu_a = 50, 100, \text{ and } 200 \mu_B$ are shown in Fig. 3. For simplicity, we have assumed that the blocking temperature is a sharp transition. Thus, the contributions from the uncompensated moment are only included at temperatures above the blocking temperature, which here is assumed to be 25 K. Below T_B the contribution from the uncompensated moment to χ_i is negligible, when the applied field is parallel to the easy axis, but because there is no energy barrier between states with opposite directions of the thermoinduced moment, one should expect it to contribute to the susceptibility even at very low temperatures. At higher temperatures, the assumptions concerning small values of the angles θ_1 and θ_2 may not be fulfilled, and Eqs. (18) and (19) may not be good approximations to the susceptibility. The value of $\langle \cos \theta \rangle$ depends linearly of temperature and is given by

$$
\langle \cos \theta \rangle \approx 1 - \frac{k_B T}{2KV}.
$$

(20)

For a particle with sublattice magnetization $M_s = \mu_0 / V \approx 10^6 \text{ A m}^{-1}$ one finds that $K = B_s M_s = 10^4 \text{ J m}^{-3}$. At 100 K we then find that $\langle \cos \theta \rangle = 0.93$, i.e., the condition $\langle \cos \theta \rangle = 1$ is reasonably well fulfilled at temperatures up to around 100 K. In Fig. 3, we have therefore only shown data up to 100 K.

III. DISCUSSION

Most of the previously published magnetization data for antiferromagnetic nanoparticles have been analyzed using a
model in which it is assumed that the magnetization is given by the sum of a Langevin function and a linear term. However, as it has been pointed out by Silva et al.,5,6 the inevitable distributions in particle size and particle moments may result in erroneous values of the magnetic moment when this simple model is used. Furthermore, because of the relatively small values of the magnetic moments of antiferromagnetic nanoparticles the magnetic anisotropy plays a relatively larger role in magnetization measurements than in nanoparticles of ferro- and ferrimagnetic nanoparticles, and this can also result in erroneous results when a simple data analysis is used.7,8 It has been suggested8,16 that one should focus on the initial susceptibility when analyzing magnetization data for antiferromagnetic nanoparticles, because χ_i for a sample of randomly oriented nanoparticles does not depend on the anisotropy and the detailed form of the size distribution.

In practice, the distribution in the values of the magnetic moments of the particles will smear the features around 25 K in Fig. 3, and it may not be possible to conclude whether an initial susceptibility, which increases with temperature, is due to the distribution of blocking temperatures or if it is due to thermoduced magnetization. Furthermore, in a sample of randomly oriented particles at temperatures below T_B, the uncompensated magnetic moments give rise to a nonzero, temperature-independent contribution to the susceptibility given by17

$$\chi = a \frac{\mu_0 \mu_n^2}{|K| V^2},$$ \hspace{1cm} (21)

where $a = \frac{1}{2}(\sin^2 \beta)$ and β is the angle between the applied field and the easy axis. The average is over all particles. In an analysis of the initial susceptibility of antiferromagnetic nanoparticles, it is also necessary to take into account that the antiferromagnetic susceptibility χ_{AF}, which is due to the canting of the sublattice moments in response to the applied field, also contributes to the total susceptibility. This contribution increases with temperature like the contribution from the thermoduced moment. The value of χ_{AF} is about $1/\lambda_{12}$ at the Néel temperature.

It should also be realized that surface effects and defects in the interior of a nanoparticle with antiferromagnetic exchange coupling constants can result in localized, non-collinear spin structures, which can contribute to the net magnetic moment.18,19 The magnitude of this contribution will depend on the particle size, the surface structure, and the concentration of defects. However, normally this contribution to the magnetic moment is expected to be small compared to those discussed above, because only a limited number of spins contribute, and the magnetic moments due to the localized noncollinear spin structures may to a large extent cancel out due to more or less random orientations.

\textbf{IV. SUMMARY}

We have extended the previous model for thermoduced magnetization in antiferromagnetic nanoparticles with the effect of an uncompensated moment. We find that the uncompensated moment may contribute significantly, as compared to the thermoduced moment, to the initial susceptibility at finite temperatures. However, for nanoparticles with values of the exchange field and the anisotropy field that are not too large, the thermoduced magnetization may give a predominant contribution to the initial susceptibility at finite temperatures.

\textbf{ACKNOWLEDGMENTS}

The authors would like to thank Cathrine Frandsen and Christian R. H. Bahl for valuable comments and suggestions. This work was supported by the Danish Research Council for Technology and Production Sciences.
THERMOINDUCED MAGNETIZATION AND…

PHYSICAL REVIEW B 74, 014405 (2006)

12 C. Kittel, Phys. Rev. 82, 565 (1951).