A simple analysis of the stable field profile in the supercritical TEA

Jeppesen, Palle; Jeppsson, B.

Published in:
IEEE Transactions on Electron Devices

Publication date:
1973

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
A Simple Analysis of the Stable Field Profile in the Supercritical TEA

PALLE JEPPESEN AND BERT I. JEPPSSON

Abstract—An analytical investigation supported by numerical calculations has been performed of the stable field profile in a supercritical diffusion-stabilized n-GaAs transferred electron amplifier (TEA) with ohmic contacts. In the numerical analysis, the field profile is determined by solving the steady-state continuity and Poisson equations. The diffusion-induced short-circuit stability is checked by performing time-domain computer simulations under constant voltage conditions. The analytical analysis based on simplifying assumptions gives the following results in good agreement with the numerical results. 1) A minimum doping level required for stability exists, which is inversely proportional to the field-independent diffusion coefficient assumed in the simple analysis. 2) The dc current is bias independent and below the threshold value, and the current drop ratio increases slowly and almost linearly with the doping level. 3) The domain width normalized to the diode length L varies almost linearly with $(V_T/V_T-1)/(n_d L)$, where V_T is the bias voltage, V_T is the threshold voltage, and n_d is the doping level. 4) The peak domain field varies almost linearly with $(V_T/V_T-1)/(n_d L)$. Those results contribute to the understanding of the high $n_d L$-product switch and the stability of the supercritical TEA.

I. INTRODUCTION

THIS PAPER presents a numerical, and in particular an analytical, analysis of the stable high-field domain in the anode of a supercritical diffusion-stabilized n-GaAs transferred electron device (TED) with ohmic contacts [1].

Stable anode domains were first discovered in probing experiments by Thim and Knight [2], and then observed experimentally and in computer simulations by Shaw et al. [3] for cathode fields below the threshold field for onset of negative differential mobility. Stable anode domains were also observed in computer simulations by Magarshack and Mircea [4], [5], who furthermore predicted a bandwidth exceeding one octave for the negative resistance of diffusion-stabilized TED's. In such devices, bistable switching—made possible by the presence of stable anode domains—has been observed by Thim [6] and Boccon-Gibod and Teszner [7]. Moreover, a small-signal analysis of Guéret [8] has led to the following criterion for a diffusion-dominated anode nonuniformity to nucleate a stationary high-field layer:

$$\tau_1 > \frac{2}{v} L_D = \frac{2}{v} \sqrt{D \tau_1}. \quad (1)$$

Here τ_1 is the numerical value of the negative dielectric relaxation time, L_D is the Debye length, D is the diffusion coefficient, and v is the electron drift velocity. This criterion for absolute instability [8] suggests that the stationary anode layer should appear for doping levels exceeding a diffusion-dependent lower limit. This conclusion agrees with time-domain computer studies by Thim [9] and by Guéret and Reiser [10], in which switching to a low-current stable state with anode-layer formation takes place for doping levels above a lower limit given approximately by criterion (1). Thim [9] derived this criterion heuristically by requiring that the accumulation layer should readjust more quickly than it moves into the anode. Along the same line of thought, the authors [11] have also performed computer simulations in which the response of a diode to a quickly applied bias voltage has been studied. Ohmic contacts and a homogeneous doping profile were assumed for the diode. Provided the field-dependent diffusion coefficient was sufficiently large, a gradual decay in the peak of the accumulation layer for each passage into the anode was observed, until the final stable field configuration with a high-field domain in the anode was reached. This stable field configuration was possible because the diffusion current helped preserve the current continuity in the accumulation layer associated with the anode domain. During the decay of the current, transient accumulation layer transits—as opposed to domain transits—were observed [11] because ohmic contacts imply low cathode fields, which in turn assure that the cathode is not a major domain nucleation site. For nonohmic cathodes with cathode fields well in the range between the threshold and valley field of the velocity-field characteristic, transit-time Gunn domain oscillations will occur [3] without any stable solution. However, for cathode fields only slightly above threshold, stable anode domains is still a possible solution [3], [12].

The present simple analysis explains why the diffusion coefficient must be sufficiently large, why there is a diffusion-dependent lower limit for the doping level, why the device switches to a high-voltage state with saturated current, and how the stable field con-

Manuscript received September 14, 1972; revised October 30, 1972. This work was supported in part by the Reinholdt W. Jorck Foundation.

P. Jeppesen is with the Laboratory of Electromagnetic Theory, Technical University of Denmark, Lyngby, Denmark.

B. I. Jeppsson is with the Microwave Department, Royal Institute of Technology, Stockholm, Sweden.
configuration depends on doping level and applied bias. Such an analysis is felt to be of interest because it contributes to the understanding of the supercritical transferred electron amplifier and the bistable switch.

The stable field configuration is investigated by considering the Poisson and the current continuity equations. Even for a piecewise linearized velocity-field characteristic and a field-independent diffusion coefficient, the direct solution of those two fundamental equations is not very practical. However, by also assuming a linear variation for the electron density versus distance in the upstream portion of the domain, a simple and useful approximate solution is easily obtained.

In Section II the numerical investigation is described before the simplifying assumptions used in the simple analysis are introduced, and then formulas for later use are derived. Section III deals with a simple limiting case, which serves the purpose of emphasizing the physics involved. Proceeding from the simple to the more complicated case, Section IV treats the general case, for which the bias current, the width, and the peak field of the domain are calculated as functions of bias voltage, doping level, and diode length. The results are shown to be in good agreement with numerical solutions. Section V contains concluding remarks.

II. FORMULATION OF THE MODEL

Before a simple analytical model is formulated, it is useful to summarize the numerical calculations and results.

A. Numerical Results

The question of stability and the eventual stable field profile was first investigated by solving numerically the time-dependent problem. With reference to the sign convention of Fig. 1(a), the fundamental equations in the active layer of the diode are the Poisson equation

\[\frac{\partial E}{\partial x} = \frac{q}{\epsilon} (n - n_0) \quad (2) \]

and the continuity equation

\[J(t) = qnv - \frac{\partial}{\partial x} (Dn) + \epsilon \frac{\partial E}{\partial t} \quad (3) \]

where \(E(x, t) \) is the space- and time-dependent electric field, \(n(x, t) \) is the free-electron density, \(n_0 \) is the net donor density in the active layer, \(-q(q > 0) \) is the electric charge, \(\epsilon \) is the absolute permittivity of GaAs, \(J(t) \) is the space-independent total current density, \(v(E) \) is the electron drift velocity-electric field characteristic, and \(D(E) \) is the electron diffusion coefficient-electric field characteristic suggested by Copeland [13]. The \(v(E) \)- and \(D(E) \)-characteristics are shown in Fig. 1(b) and (c), respectively. The numerical solution of (2) and (3) under constant voltage conditions and using boundary conditions relevant to heavily doped ohmic contacts is obtained using a finite difference method. The bias voltage was quickly applied to the diode, and then the decay of the induced large-signal transient was studied as the domain reached its stable state after several accumulation layer transits [11]. As only constant voltage conditions are considered, a stable solution represents short-circuit stability. In the following, stability is therefore referred to as short-circuit stability, leaving open the question of open-circuit stability or more complicated circuit-controlled stabilities.

In the following, a diode having the active layer length \(L = 10 \mu m \) and the lattice temperature \(T_s = 300 K \) was chosen. For a field-independent diffusion coefficient \(D_0 = 200 \text{ cm}^2/\text{s} \) replacing the \(D(E) \)-characteristic of Fig. 1(c), short-circuit stability with a high-field domain in the anode was found for \(n_0 > 2 \times 10^{16} \text{ cm}^{-3} \) [5]. When \(D_0 \) was increased to \(400 \text{ cm}^2/\text{s} \), short-circuit stability existed for doping levels down to \(1 \times 10^{15} \text{ cm}^{-3} \), and for \(500 \text{ cm}^2/\text{s} \) down to the subcritically doped range where the device also is short-circuit stable [14], although the stability in this range does not stem from diffusion effects. For the \(D(E) \)-characteristic of Fig. 1(c), short-circuit stability was also found down to the subcritical doping range, although the stability was marginal around \(5 \times 10^{14} \text{ cm}^{-3} \).

Having settled the question of short-circuit stability, the stable field profile was then studied for various bias and doping levels. To this end, the steady-state (time-independent) equations were used, so that computer time could be saved by not having to calculate through sometimes slowly decaying transients. Now the Poisson equation writes

\[\frac{dE}{dx} = \frac{q}{\epsilon} (n - n_0) \quad (4) \]
and the continuity equation

\[J = qn \nu - q \frac{d}{dx} \left(D_n \right). \]

The numerical solution of these two equations is obtained using an iterative method. In cases where the device is short-circuit stable, the time-dependent and steady-state equations give the same solution for identical conditions. A typical stable solution is shown in Fig. 1(a) for \(n_o = 1.5 \times 10^{14} \text{ cm}^{-3} \) and for the bias voltage \(V_B = 2.74 \times V_T \), where \(V_T = LE_T \) is the threshold voltage and \(E_T = 3.48 \text{ kV/cm} \) is the threshold field.

The numerical procedure can easily tackle the non-linear problem, but it does not provide an interpretation of the solution in simple physical terms. Therefore, (4) and (5) will be treated analytically in the following by introducing suitable simplifying assumptions.

B. The Piecewise Linear \(v(E) \)-Characteristic

In Fig. 2(a) the electric field and electron density profiles are shown schematically in relation to a piecewise linear \(v(E) \)-characteristic [Fig. 2(b)] given by

\[\nu = \begin{cases} \mu_0 E & \text{for } 0 \leq E \leq E_T \\ \nu_T - \mu_1 (E - E_T) & \text{for } E_T \leq E \leq E_V \\ \nu_T & \text{for } E_V \leq E < \infty \end{cases} \]

where the threshold velocity \(\nu_T \), valley velocity \(\nu_V \), threshold field \(E_T \), valley field \(E_V \), low-field mobility \(\mu_0 \), and negative differential mobility \(-\mu_1 (\mu_1 > 0) \) are related according to

\[\nu_T = \mu_0 E_T \]

and

\[\mu_1 = \frac{\nu_T - \nu_V}{E_V - E_T}. \]

In the numerical examples to be discussed later, the following data for the \(v(E) \)-characteristic will be used: \(E_T = 3.48 \text{ kV/cm}, \) \(E_T/E_V = 2.5, \) \(\nu_T = 10^7 \text{ cm/s}, \) the velocity peak-to-valley ratio \(\nu_T/\nu_V = 2.2, \) and \(\mu_0 = 6310 \text{ cm}^2/\text{V} \cdot \text{s} \) and \(\mu_1 = 2300 \text{ cm}^2/\text{V} \cdot \text{s} \) according to (8) and (9), respectively. These values approximate the input data used in the numerical calculations.

C. The Diffusion Coefficient

In this simple analysis, no attempt will be made to fully treat consequences that might stem from the field dependence of the diffusion coefficient. For simplicity, a field-independent coefficient \(D_0 \) will be used instead. The Copeland diffusion curve [Fig. 1(c)] exhibits a peak of 600 cm²/s for fields slightly above threshold. As the diffusion level, particularly in this field range, affects the field profile and thereby the stability, the Copeland curve will in the following simple analysis be approximated by the field-dependent \(D_0 = 500 \) cm²/s, current continuity can only be preserved provided the diffusion term \(D_0 (dn/dx) \) is sufficiently large. This conclusion is of crucial importance and shall be investigated further.

In region 3, \(E \) is steadily increasing with \(x \), and \(n \) is therefore steadily decreasing. Moreover, \(n \) is increasing with \(x \), and any variation in the conduction term \(n \nu \)
must be balanced by the diffusion term. Note that according to (10), the current continuity would be violated if \(n \) was constant in any range of region 3.

Finally, in region 4, \(E \) increases from \(E_F \) to the peak domain field \(E_D \) and \(n \) remains constant at \(n_F \). The corresponding variation in \(n \) can be obtained from

\[
n_{0}v_{0} = n_{F}v_{F} - D_{0} \frac{dn}{dx},
\]

which can be integrated to

\[
n(x) = [n(x_F) - n_d] \exp \left(\frac{v_F}{D_0} (x - x_F) \right) + n_d
\]

where

\[
n_d = \frac{v_0}{v_F}.
\]

In the exponential function, typical values are \(v_F = 10^7 \) cm/s, \(D_0 = 500 \) cm\(^2\)/s, and, for example, \(x - x_F = 2 \) \(\mu \)m, giving \(\frac{v_F (x-x_F)}{D_0} = 4.0 \). This represents such a strong variation in \(n \) that in order to comply with the numerical solution, it is necessary to require that \(n(x_F) = n_d \), which leads to \(n(x) = n_d \) for \(x_F \leq x < L \).

It is now important to make the following conclusion. As \(n(x) \) remains constant at \(n_d \) in region 4, and is steadily increasing in region 3, continuity in \(n(x) \) requires that \(n(x) \) must exactly reach \(n_d \) at the interface, where by definition \(E = E_F \). This observation provides the final equation needed to determine the stable field profile.

Finally, (11) also shows that since \(v_0 \) is upper bounded by \(v_F \), \(n_d \) must be upwards limited by \(n_{d,\text{max}} = \frac{n_0 v_F}{v_F} \).

E. The Linear Electron Density Assumption

For simplicity we introduce the substitution \(y = x - x_F \), into which \(x_F \) and \(x_v \) are substituted in order to define the useful parameters \(y_F = x_F - x_0 \) and \(y = x - x_v \) [Fig. 2(a)].

Even using the simplified \(v(E) \)-characteristic and the diffusion coefficient \(D_0 \) introduced so far, an exact integration of (4) and (5) is cumbersome, if at all possible. Instead, the current continuity equation (10) will be integrated from \(y = 0 \) to \(y = y_F \) :

\[
n_{0}v_{0}y_{F} = \int_{0}^{y_F} n_{d}v_{d}dy - D_{0}(n_{d} - n_0).
\]

As shown in Fig. 1(a), the numerical solution gives an almost linear variation for \(n(x) \) in regions 2 and 3. Therefore, little error is introduced when evaluating the integral in (12) by assuming the linear variation

\[
n = n_0 + \frac{n_d - n_0}{y_F} y, \quad 0 \leq y \leq y_F.
\]

Using this assumption, expressions for \(y_F \) and \(y_F \) are derived in Appendix A.

III. The Limiting Case

In order to emphasize the simple physical idea underlying the mathematical treatment, this section is devoted to a simple case being at the verge of instability because the field in front of the domain equals the threshold field for negative differential mobility. For this situation, which occurs, for example, for a sufficiently small diffusion coefficient, the concept of minimum diffusion and doping density required for stability is introduced.

A. Minimum Diffusion Required for Stability

As summarized in a previous publication [11], controversy evidently surrounds the \(D(E) \)-characteristic in GaAs. It was also shown in this publication that a field-independent diffusion coefficient had to exceed a certain doping-dependent lower limit in order to attain the diffusion-stabilized condition.

With reference to Fig. 2, let us imagine that the field-independent diffusion \(D_0 \) is decreased while \(n_0 \) is kept fixed. For a smaller \(D_0 \), \(n(x) \) will vary more abruptly versus distance in regions 2 and 3, which means that \(y_F \) will decrease. Now, the Poisson equation (4) can be integrated to

\[
E_F = \frac{v_0}{\mu_0} + \frac{q}{\epsilon} \int_{0}^{y_F} (n - n_0) dy
\]

where, for the moment, \(v_0 \) and \(n(y_F) = n_{0}v_{0}/v_F \) will be thought of as being functions of \(y_F \). The differentiation with respect to \(y_F \) gives

\[
\frac{dv_0}{dy_F} + \frac{q\mu_0}{\epsilon v_F} v_0 = \frac{q\mu_0 n_0}{\epsilon},
\]

which is easily integrated to

\[
v_0 = v_F + (v_F - v_0) \exp \left[-\frac{q\mu_0 n_0}{\epsilon v_F} (y_F - y_{F,\text{min}}) \right]
\]

using the boundary condition \(v_0(y_{F,\text{min}}) = v_F \). Equation (14) shows that when \(D_0 \) and thereby \(y_F \) decreases, \(v_0 \) increases towards its upper limit \(v_F \). Simultaneously, \(E_F \) reaches \(E_F \), which for a uniform doping profile is the limit for stability. This situation is called the limiting case.

B. The Minimum Diffusion Coefficient for Stability

Equation (14) serves the purpose of showing that \(v_0 \) will increase as progressively smaller \(D_0 \) values are considered. However, the minimum diffusion coefficient for stability \(D_{0,\text{min}} \), for which \(v_0 = v_F \), cannot be determined from this equation. Instead (12) is considered in the form

\[
n_{0}v_{0}y_{F,\text{min}} = \int_{0}^{y_{F,\text{min}}} n_{d}v_{d}dy - D_{0,\text{min}}(n_{d,\text{max}} - n_0),
\]

which shows that the minimum diffusion coefficient required for stability is given by

\[
D_{0,\text{min}} = \frac{1}{n_{d,\text{max}} - n_0} \int_{0}^{y_{F,\text{min}}} n_{d}v_{d}dy.
\]
which, as outlined in Appendix B, leads to
\[D_{0,\text{min}} = \frac{e v_T^2}{q \mu_1 n_0} \left(\frac{1}{2} \frac{v_T}{v_T} - \frac{1}{6} \right). \] (16)

This result will be discussed further in the broader context of Section IV-B.

IV. THE GENERAL CASE

From the simple limiting case, we shall now proceed to the general case, where the field in front of the domain is below threshold.

A. The General Case as a First-Order Perturbation

It was shown in Section II-D that in region 1 [Fig. 2(a)] \(v_T < v_0 < v_T \), which means that \(E_0 \) is not too far below \(E_T \), as also has been observed in numerous computer calculations. Therefore, in the following analysis let
\[E_0 = E_T - \Delta E \] (17)
where \(\Delta E \ll E_T \), so that this general case is treated as a first-order perturbation of the limiting case. Accordingly, the velocity \(v_0 \) in front of the domain is given by
\[v_0 = v_T - \frac{\Delta E}{E_T}. \] (18)

B. The Minimum Doping Level for Stability

In this section, \(n_0 \) will be varied for a fixed \(D_0 \) in order to show that a minimum doping level for stability \(n_{0,\text{min}} \) exists. To this end, the relative field drop \(\Delta E/E_T \) is calculated in a procedure that is similar to the one in Section III-B, since it also is based on (10). According to Appendix C, the relative field drop is given by
\[\frac{\Delta E}{E_T} = \frac{q D_0 n_0}{E_T} \left(\frac{v_T}{E_T} \right) - \left(1 - \frac{1}{2} \frac{v_T}{v_T} \right) \frac{v_T}{E_T} + \frac{1}{6}. \] (19)

As shown in Section IV-C, this formula implies that \(\Delta E/E_T \) decreases with decreasing \(n_0 \). However, in order for the diode to be stable, it is necessary that \(\Delta E > 0 \), requiring
\[n_0 > n_{0,\text{min}} = \frac{e v_T E_T}{v_T - 1} \left(\frac{1}{2} \frac{v_T}{v_T} - \frac{1}{6} \right), \]
which by use of (9) also can be written
\[n_{0,\text{min}} = \frac{e v_T^2}{4 q \mu_1 D_0} \left(\frac{1}{2} \frac{v_T}{v_T} - \frac{1}{6} \right). \] (20)

This expression is identical to (16), in agreement with the fact that the general case has been treated as a first-order perturbation of the limiting case. Substituting into (20) \(q = 1.6 \times 10^{-19} \) C, \(\epsilon = 13.2 \epsilon_0 = 1.17 \times 10^{-12} \) F/cm, the data for the \(v(E) \)-characteristic of Section II-B and \(D_0 = 200 \) or 400 cm²/s give, respectively, \(n_{0,\text{min}} = 1.5 \times 10^{16} \) or \(7.4 \times 10^{14} \) cm⁻³. Those values are in good agreement with numerical results [5], [11], which supports the simple analysis. For \(D_0 = 500 \) cm²/s, the value approximating the Copeland curve, \(n_{0,\text{min}} = 5.9 \times 10^{14} \) cm⁻³ is obtained. This low value is close to the stable subcritical range (for \(L = 10 \) μm), in agreement with the numerical calculations in Section II-A, where the Copeland diffusion curve led to stability for any doping level of practical interest.

It is interesting to compare (20) with the criterion (1) of Guéret [8], which can be written
\[n_{0,\text{min}} = \frac{e v_T^2}{4 q \mu_1 D}. \] (21)

The two expressions are quite similar, and (21) yields the same value for \(n_{0,\text{min}} \) if a drift velocity close to \(v_T \) is substituted for \(v \). A similar expression has been obtained by Thim [9].

C. The Current Density

For the specific example considered earlier with \(D_0 = 500 \) cm²/s, the relative field drop \(\Delta E/E_T \) as calculated from (24) is plotted versus \(n_0 \) in Fig. 3. For comparison, the corresponding curve obtained from the numerical calculations in Section II-A is also shown, and good agreement is found. Now in the simple analysis, the dc current density is given by
\[J = J_T - \Delta J, \]
where \(J_T = q n_{0,\text{th}} v_T E_T \) is the threshold current density and \(\Delta J = q n_{0,\text{th}} D \Delta E \) is the current density drop, which means in turn that \(\Delta J/J_T = \Delta E/E_T \). In the computer simulations, however, the current density drop is somewhat lower than \(\Delta E/E_T \), as shown in Fig. 3. This stems from the curvature of the \(v(E) \)-characteristic around the peak velocity [Fig. 1(b)]. The fact that \(\Delta J/J_T \) increases with increasing \(n_0 \) means that the bistable switching phenomenon in supercritical TED's
will get more pronounced as the doping level is increased.

For the subcritical amplifier, J increases with increasing bias because of an increasing amount of injected space charge. The diode thus exhibits a positive differential resistance at dc in spite of its negative differential mobility, as predicted by Shockley [15]. However, for the diffusion-stabilized amplifier, (19) predicts a bias-independent dc current. This agrees with published experimental results [1] and with the numerical calculations of Section II-A, in which a bias variation of, for example, a factor of three caused no current variation at all. As recently pointed out in the literature [16], [17], this bias-independent current is not in contradiction with Shockley's positive conductance theorem.

D. The Domain Width

The width of the part of the domain where $E > E_T$ is $L_d + y_T - y_V - L_d + y_V$ since $y_T < y_V$ (Fig. 2). This domain width now will be determined.

The width L_d of the part of the domain where $E > E_V$ (Fig. 2) can be found by equating the area below the field profile with the applied bias voltage $V_B = L E_B$, where E_B is defined as the average bias field. This area can naturally be divided into the four hatched areas shown in Fig. 4. Hence,

$$V_B = V_1 + V_2 + V_3 + V_4$$ (22)

where the voltages V_1, V_2, V_3, and V_4 are equal to the four areas, respectively. Those areas are calculated in Appendix D, where the method for obtaining the following formula is also outlined:

$$L_d = \sqrt{\frac{2 \alpha E_T}{q n_o L} \frac{V_B}{V_T} - 1} \left[1 + \left(\frac{V_T}{V_B - V_T} + \frac{V_T}{V_B - V_T} \right) \frac{\Delta E}{2 E_T} \right]$$ (23)

For $1.5 \times 10^{12} < n_o L < 3.5 \times 10^{12}$ cm$^{-2}$, $5 > V_B/V_T > 2$, $D_o = 500$ cm2/s, and the $v(E)$-characteristic of Section II-B, (23) gives $39 > L_d/L > 16$ percent.

As far as y_V is concerned, one obtains (to the first order in $\Delta E/E_T$) from (A.4), (11), and (17)

$$y_V = \frac{2 \alpha E_T}{E_T} \left(\frac{V_V}{E_T} - 1 \right) \frac{V_T}{V_T - y_V} \left[1 + \left(\frac{V_T}{V_T - y_V} + \frac{E_T}{V_B - V_T} \right) \frac{\Delta E}{2 E_T} \right]$$ (24)

For $1.5 \times 10^{12} < n_o L < 3.5 \times 10^{12}$ cm$^{-2}$, this equation gives $6.1 > y_V/L > 3.0$ percent. Therefore, y_V constitutes a minor correction to L_d in the domain width $L_d + y_V$.

In Fig. 5 the normalized domain width $(L_d + y_V)/L$ versus the normalized bias voltage is plotted for two typical cases $n_o L = 1.5 \times 10^{12}$ and 3.0×10^{12} cm$^{-2}$. Since $y_V \ll L_d$ and $\Delta E \ll E_T$, the normalized domain width is inversely proportional to $(n_o L)^{1/2}$ and proportional to $(V_B/V_T - 1)^{1/2}$. When V_B is increased, the high-field portion of the stable domain moves towards the cathode with constant slope because the dc current is bias independent. For comparison, the numerical curves are also shown, and excellent agreement is found.

E. The Domain Peak Field

Using L_d values obtained from (23), the peak domain field now will be calculated from (22), written in the form

$$V_B = L E_0 + \frac{1}{2} L d (E_d - E_T) + L d (E_V - E_0)$$

where the small V_4 has been neglected for simplicity. Solving this equation with respect to E_d, and subsequent substitution of (17) yields

$$\frac{E_d}{E_T} = 2 \frac{V_B}{E_T} - 1 + \frac{\Delta E}{E_T} + 2 \frac{E_V}{E_T} - 2 \frac{\Delta E}{E_T}$$

in which substitution of (23) to the first order in $\Delta E/E_T$ gives

$$\frac{E_d}{E_T} = \sqrt{\frac{2 \alpha E_T}{q n_o L} \left(\frac{V_T}{V_T - y_V} - 1 \right) \frac{V_B}{V_T} - 1} \left[1 - \left(\frac{V_T}{V_T - y_V} + \frac{E_T}{V_B - V_T} \right) \frac{\Delta E}{2 E_T} \right]$$

$$+ 2 \frac{E_V}{E_T} - 2 \frac{\Delta E}{E_T}.$$ (25)

The significance of this equation is illustrated in Fig. 6, where E_d/E_T is plotted versus V_B/V_T for the $v(E)$-characteristic, the diffusion coefficient, and the $n_o L$-products considered earlier. The analytical results are shown to be in good agreement with the numerical results. As seen from (25), E_d/E_T varies almost linearly with $(n_o L)^{1/2}$ and $(V_B/V_T - 1)^{1/2}$ because $\Delta E/E_T \ll 1$.
JEPPISEN AND JEPSSON: ANALYSIS OF SUPERCRITICAL TEA

V. CONCLUSION

An analytical investigation, supported by numerical calculations, of the stable field profile in a diffusion-stabilized TEA with ohmic contacts has been performed. Using the Copeland diffusion curve in the numerical calculations, a 10-μm device was found to be short-circuit stable for any doping range of practical interest. The stability, however, was marginal for doping levels around 5x10¹⁴ cm⁻³. Introducing in the analytical investigation a field-independent diffusion coefficient D_0 along with suitable simplifying assumptions for the $v(E)$-characteristic and also for the electron density profile, the conclusions obtained are these.

1) A minimum doping level required for stability exists, which is inversely proportional to the diffusion coefficient assumed for GaAs. For $D_0=500$ cm²/s, the value chosen to approximate the Copeland diffusion curve, the minimum doping level is 5.9x10¹⁴ cm⁻³.

2) In a first-order approximation, the dc current is bias independent and below threshold. The relative current drop varies slowly and almost linearly with the doping level (Fig. 3).

3) The normalized domain width is approximately inversely proportional to $(n_0L)^{1/2}$, and the normalized domain peak field varies almost linearly with $(n_0L)^{1/2}$.

4) The normalized width and peak field of the domain both vary almost linearly with $(V_B/V_T-1)^{1/2}$ because the dc current is bias independent, which forces the domain to keep its slope in electric field constant for varying bias level.

5) The results are in good agreement with detailed numerical results, and thus provide an explanation in simple physical terms of the existence and behavior of stable anode domains.

These conclusions contribute to the understanding of the high n_0L-product bistable switch and the stability of the supercritical TEA.

APPENDIX A

CALCULATIONS OF y_v AND y_T

From (4) and (13), we get by integration

$$\frac{dE}{dy} = \frac{q n_d - n_0}{\varepsilon y_v} y, \quad 0 \leq y \leq y_v, \quad (A.1)$$

which is integrated to

$$E = E_0 + \frac{q n_d - n_0}{2\varepsilon} y^2, \quad 0 \leq y \leq y_v. \quad (A.2)$$

Substitution of $y=y_v$ into this equation gives

$$E_v = E_0 + \frac{q n_d - n_0}{2\varepsilon} y_v, \quad (A.3)$$

from which y_v can be obtained using (11):

$$y_v = \frac{2\varepsilon}{q n_0} \frac{v_v}{v_0 - v_v} (E_v - E_0). \quad (A.4)$$

Similarly, substitution of $y=y_T$ gives

$$y_T = \frac{2\varepsilon}{q n_0} \frac{v_T}{v_0 - v_T} \sqrt{(E_T - E_0)(E_T - E_0)}. \quad (A.5)$$

APPENDIX B

CALCULATION OF THE MINIMUM DIFFUSION COEFFICIENT FOR STABILITY

For the limiting case with $E_0=E_T$, formula (A.4) simplifies to

$$y_{v,\text{min}} = \frac{2\varepsilon}{q n_0} \frac{v_v}{v_0 - v_v} (E_v - E_T) = 2r_1 v_v \quad (B.1)$$

where the negative dielectric relaxation time r_1 is given by

$$r_1 = \frac{\varepsilon}{q n_0 v_v}. \quad (B.2)$$

Moreover, y_T obviously vanishes and

$$n_d = n_{d,\text{max}} = n_0 \frac{v_T}{v_T}. \quad (B.3)$$
The integral in (15) can be evaluated using (4), (7), (A.1), (B.1), (B.3), and (9):

\[
\int_{0}^{\nu_{V,\text{min}}} n v dy = \int_{0}^{\nu_{V,\text{min}}} \left(n_0 + \frac{e}{q} \frac{dE}{dy} \right) v dy
\]

\[
= n_0 \int_{0}^{\nu_{V,\text{min}}} v dy + \frac{e}{q} \int_{E_T}^{E_V} \frac{dE}{dy} dy
\]

\[
= n_0 \left[\frac{\nu_T}{2} + \frac{1}{\nu_T} \int_{E_T}^{E_V} \frac{dE}{dy} dy \right]_{0}^{\nu_{V,\text{min}}}
\]

\[
+ \frac{e}{q} \int_{E_T}^{E_V} \left[\nu_T - \mu_1 (E - E_T) \right] dE
\]

\[
= n_0 \frac{1}{2} \nu_T (\nu_T + \frac{3}{2} (\nu_T - \nu_V))
\]

\[
+ \frac{e}{2 \mu_1} (\nu_T - \nu_V) (\nu_T + \nu_V). \tag{B.4}
\]

This expression for the integral, along with (B.1), (B.3), and (B.2), are then substituted into (15), and when this equation is solved with respect to \(D_{b,\text{min}} \), expression (16) is obtained.

APPENDIX C

OUTLINE OF THE CALCULATION OF THE RELATIVE FIELD DROP

By using (4), (6), and (7), the integral in (12) can be evaluated as follows:

\[
\int_{0}^{\nu} n v dy = \int_{0}^{\nu} \left[n_0 + \frac{e}{q} \frac{dE}{dy} \right] v dy
\]

\[
= n_0 \int_{0}^{\nu} v dy + \frac{e}{q} \int_{E_T}^{E_V} v dE
\]

\[
= n_0 \left[\frac{\nu}{2} + \frac{1}{\nu} \int_{E_T}^{E_V} \frac{dE}{dy} dy \right]_{0}^{\nu}
\]

\[
+ \left[\nu - \frac{1}{\nu} \int_{E_T}^{E_V} \frac{dE}{dy} dy \right] \nu_{V,T}
\]

\[
+ \frac{e}{q} \int_{E_T}^{E_V} \nu_0 E dE
\]

\[
+ \frac{1}{E_T} \left[\nu_T - \mu_1 (E - E_T) \right] dE.
\]

Now, from (A.1), (8), and (9), one further obtains

\[
\int_{0}^{\nu} n v dy = n_0 \left[\frac{\nu}{2} + \frac{1}{\nu} \left(\frac{v_T}{3} - \nu_T \right) \nu_T q \right] \nu_T
\]

\[
\cdot \left[1 - \frac{\mu_1 + \mu_0}{\mu_1} \frac{\nu_T^2}{\nu_{y,T}^2} \right]
\]

\[
+ \frac{e}{q} \left[\frac{1}{2} \nu_T \left(\frac{E_T}{E_T} - \nu_T \right) \right]
\]

\[
+ \frac{1}{2} \nu_T (E_T - E_T) \right].
\]

Substitution of this expression into (12) and subsequent substitution of (17), (18), (11), (A.4), and (A.5) gives

\[
3 \left(\frac{E_T}{E_T} - 1 \right) + 2 \frac{\Delta E}{E_T} = \frac{4 \left(\frac{E_T}{E_T} - 1 \right)}{3 \left(\frac{E_T}{E_T} - 1 \right) - 1 - \frac{v_T}{v_T - v_T} \frac{\Delta E}{E_T - E_T} \left[1 - \frac{\mu_1 + \mu_0}{\mu_1} \frac{\Delta E}{E_T - E_T + \Delta E} \right]^{1/2}
\]

\[
+ \frac{1}{v_T} \left[\frac{E_T}{E_T} - 1 \right] \left[1 - \frac{\Delta E}{E_T} \right]
\]

\[
- \frac{q \mu_0}{e v_T E_T} \left(\frac{v_T}{v_T} - 1 \right) \left(1 - \frac{v_T}{v_T - v_T} \frac{\Delta E}{E_T} \right). \tag{C.1}
\]

Keeping the assumption \(\Delta E \ll E_T \) in mind, and calculating to the first order in \(\Delta E/E_T \), (C.1) leads to expression (19) for the relative field drop.

APPENDIX D

CALCULATION OF THE FOUR VOLTAGES

In this Appendix, the specific \(v(E) \)-characteristic given in Section II-B will be used for approximate evaluations. Now, with reference to Fig. 4 and (17), \(V_1 \) is given by

\[
V_1 = LE_0 = LE_T \left(1 - \frac{\Delta E}{E_T} \right)
\]

where \(LE_T = 3.48 \) V.

Let \(E_d \) denote the domain peak field (Fig. 4). Then \(V_1 \) can be expressed by

\[
V_1 = \frac{1}{2} L_d (E_d - E_V)
\]

\[
= \frac{1}{2} L_d \frac{q \mu_1}{e} \left(\frac{v_T}{v_T} - 1 \right) \left(1 - \frac{v_T}{v_T - v_T} \frac{\Delta E}{E_T} \right)
\]

where (4), (11), and (18) have been used. The numerical solutions have shown that \(L_d = 2 \) \(\mu \) m is a typical value. For \(n_0 = 1.5 \times 10^{28} \) cm\(^{-3} \), \(V_2 \) is therefore approximately

\[
\frac{1}{2} L_d \frac{q \mu_0}{e} \left(\frac{v_T}{v_T} - 1 \right) = 6.2 \text{ V}.
\]

The voltage \(V_3 \) is given by

\[
V_3 = L_d (E_V - E_0) = L_d (E_V - E_T) \left(1 + \frac{\Delta E}{E_T - E_T} \right)
\]

where

\[
L_d (E_V - E_T) = 1.3 \text{ V}.
\]

For the voltage \(V_4 \), one finds to the first order in \(\Delta E/E_T \)
\[V_t = \int_0^{\nu_T} (E - E_0) dy = \frac{2}{3} qn_0 \nu_T - \nu_V \left[1 + \left(\frac{\nu_T}{\nu_V} - \frac{2E_T}{E_T - E_V} \right) \Delta E \right] \]

where

\[\frac{2}{3} qn_0 \nu_T - \nu_V \left(E_V - E_T \right)^2 = 0.09 \text{ V}. \]

In (22) we now substitute the expression for the four voltages, and their values suggest that for an approximate determination of \(L_d \), (22) can be simplified to

\[LE_B = LE_T \left(1 - \frac{\Delta E}{E_T} \right) + \frac{L_d}{2} qn_0 \left(\frac{\nu_T}{\nu_V} - 1 \right) \left(1 - \frac{\nu_T}{\nu_V} - \frac{\Delta E}{E_T} \right). \]

To the first order in \(\Delta E/E_T = \Delta J/J_T \), this equation leads to expression (23) for \(L_d / L \).

References

