Anisotropic carrier and exciton confinement in T-shaped quantum wires revealed by magneto-photoluminescence

Langbein, Wolfgang Werner; Gislason, Hannes; Hvam, Jørn Marcher; Zeman, J

Published in:
Summaries of papers presented at the International Quantum Electronics Conference

Link to article, DOI:
10.1109/IQEC.1998.680177

Publication date:
1998

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
QWA4 9:00 am

Anisotropic carrier and exciton confinement in T-shaped quantum wires revealed by magneto-photoluminescence

W. Langbein, H. Gislason, J.M. Hvam, J. Zeman*

Mikroelektronik Centre, The Technical University of Denmark, Building 345 east, DK-2800 Lyngby, Denmark; E-mail: langbein@mic.dtu.dk

The realization of one-dimensional (1D) semiconductor nanostructures with large confinement energies is of importance for device applications. Different techniques such as growth on tilted substrates (Serpentine superlattices) or prepatterned substrates (V-groove quantum wires) and the cleaved-edge overgrowth of T-shaped structures\(^1\)\(^2\) have been demonstrated. For the T-shaped structures, the confinement energy has recently been increased to above 2\(^2\)\(\text{keV}\) at room temperature by optimizing structure parameters.\(^3\)\(^4\) A decreased exciton diameter in the [1\(\overline{1}\)0] direction in the wire compared with the [1\(\overline{1}\)0] well was revealed by magneto-photoluminescence.\(^5\) We determine here the extension of the T-shaped quantum wire (T-QWR) state in both confining directions [1\(\overline{1}\)0] and [001] to verify its 1D character, as shown for crescent-shaped wires.\(^6\)\(^7\)

QWA4 Table 1. Deduced Parameters of Excitonic Transition of T-QWR Sample

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{[110]})</td>
<td>2.1 nm</td>
<td></td>
</tr>
<tr>
<td>(d_{[001]})</td>
<td>5.6 nm</td>
<td>anisotropic</td>
</tr>
<tr>
<td>(d_{[110]})</td>
<td>10.2 nm</td>
<td>exciton</td>
</tr>
<tr>
<td>(E_B)</td>
<td>11 meV</td>
<td></td>
</tr>
<tr>
<td>(W_{FWHM,[001]})</td>
<td>6.5 nm</td>
<td>confined</td>
</tr>
<tr>
<td>(W_{FWHM,[110]})</td>
<td>10.3 nm</td>
<td>carrier</td>
</tr>
</tbody>
</table>

QWA4 Fig. 2. (a) Calculated QWR states in the T-QWR structure. The structure shape is shown on the left; the contours of constant probability are plotted in the middle and right graphs for the conduction and valence band state, respectively. (b) Calculated probability distributions of the conduction band state averaged along the [001] and [1\(\overline{1}\)0] direction, respectively. The bars give the measured extensions \(W_{FWHM\,[001]}\) and \(W_{FWHM\,[110]}\).

The investigated optimized T-QWR sample with 37 meV confinement energy consists of a 18-nm [001] \(\text{Al}_{0.5}\text{Ga}_{0.5}\text{As}\) multiple quantum well (QW) structure intersecting with a 4.3-nm [1\(\overline{1}\)0] GaAs QW, within \(\text{Al}_{0.5}\text{Ga}_{0.5}\text{As}\) barriers.\(^8\) It was excited by an Ar\(^+\) laser at 514 nm using a multimode fiber. The photoluminescence (PL) at temperatures between 5 K and 30 K was collected by the fiber, dispersed in a monochromator, and detected by a gallium arsenide (GaAs) photomultiplier. A magnetic field from 0 to 26 T was applied by a superconducting and a resistive magnet.

The PL spectra for the field direction [001] are shown in Fig. 1a. It is seen that the T-QWR PL shows a smaller shift to high energies with increasing field than the [001] QW PL. The shift of the T-QWR PL is shown in Fig. 1b for the two principal directions of the field. It shows three distinctly different magnitudes, according to the different projected sizes of the QWR exciton state.

To quantitatively analyze the data, we apply two different models. Using an anisotropic 3D exciton model,\(^6\) we can deduce the three exciton Bohr radii \(d_{[001]}, d_{[1\overline{1}0]}, \text{and} \, d_{[1\overline{1}0]}\) and the exciton binding energy \(E_B\) using the diamagnetic shifts (see Table 1). The result shows an anisotropic exciton wave function and an exciton binding energy of 11 meV, in agreement with recent calculations.\(^5\)\(^9\)

Using a free particle model,\(^6\)\(^10\) we can determine the extension \(W_{FWHM\,[001]}\) of the electron wave function along the two confinement directions [001] and [1\(\overline{1}\)0] (see Table 1).

QWA4 Fig. 1. (a) QWR PL spectra for magnetic fields from 0 to 24 T in the [001] direction. The QWR and the [001] QW transitions are visible. (b) Energy shift of the QWR PL as a function of the field strength for field directions as labeled.
Carrier transport in a single GaAs quantum wire structure studied by time-resolved near-field spectroscopy

A. Richter, M. Siiptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Notzel, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Rudower Chaussee 6, D-12489 Berlin, Germany; E-mail: lienua@mbi.fra-berlin.de

Direct studies of the transport of photogenerated electron-hole pairs in semiconductor nanostructures require both high spatial and temporal resolution. Near-field scanning optical microscopy (NSOM), offering subwavelength spatial resolution in the 100-nm range in combination with time-resolved detection schemes is a particularly promising technique for such experiments. Here we report on the first time-resolved near-field spectroscopic investigation of the carrier dynamics in single gallium arsenide (GaAs)/(AlGa)As sidewall quantum wires.

Quantum wires (QWR) with a lateral width of 60 nm and a thickness of up to 13 nm embedded by a 6-nm GaAs quantum well (QW) were grown by molecular beam epitaxy of GaAs/(AlGa)As multilayer structures on patterned GaAs(311)A substrates along the sidewall of 15- to 20-nm-high mesa stripes oriented along the [01-1] direction (Fig. 1a). The confinement potential of the QWR and the embedding QW as directly extracted from NSOM photoluminescence excitation (PLE) spectra at 77 K, reveals shallow asymmetric energetic barriers with a height of about 18 meV on the mesa top and 14 meV on the mesa bottom.

The confinement potential of the QWR and the embedding QW as directly extracted from NSOM photoluminescence excitation (PLE) spectra at 77 K, reveals shallow asymmetric energetic barriers with a height of about 18 meV on the mesa top and 14 meV on the mesa bottom. The time-resolved data directly reveal the delayed onset of QWR luminescence for excitation positions between 1 and 3 μm. The experiments directly demonstrate the pronounced influence of spatial bandgap variations on a subwavelength scale on the real-space carrier transfer within the two-dimensional (2D) continuum and thus on the carrier trapping dynamics into the 1D QWR states.

Large third-order optical nonlinearity in Au-dielectric composite films in femtosecond time scale

H.B. Liao, R.F. Xiao, H. Wang, K.S. Wong, G.K.L. Wong, Department of Physics, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong

We report here the realization of large third-order nonlinear susceptibility, χ(3), from Au-dielectric (SiO2 and TiO2) composite films near the Au percolation threshold. The composite films were prepared by co-sputtering...