The dipole moment of a wall-charged void in a bulk dielectric

McAllister, Iain Wilson

Published in:
Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena

Link to article, DOI:
10.1109/CEIDP.1993.378928

Publication date:
1993

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
THE DIPOLE MOMENT OF A WALL-CHARGED VOID
IN A BULK DIELECTRIC

I. W. McAllister
Electric Power Engineering Department
Building 325
The Technical University of Denmark
DK-2800 Lyngby, Denmark

INTRODUCTION

In the Pedersen approach to PD transients [1-3], the occurrence within a void of a partial discharge results in a de-
position of charge on the void wall. External to the void, this charge distribution (both +ve and -ve charges) may be
viewed as a dipole. The related change in field produces a
change in the charge induced on the detecting electrode.
In turn this latter change leads to the familiar PD trans-
ient. In the present paper, the dipole moment of a wall-
charged void is examined with reference to the spatial ex-
tent of the surface charge density \(\sigma \) and the distribution
of this charge. Thereafter the salient factors influencing
the void dipole moment are discussed.

BASIC ASPECTS OF DIPOLE MOMENTS

The dipole moment \(\mathbf{u} \) of a distribution of charge is defined as

\[
\mathbf{u} = \int \mathbf{r} d\mathbf{Q}
\]

(1)

where \(\mathbf{r} \) is a radius vector which locates the position of
the charge element \(d\mathbf{Q} \). If the net charge associated with
the distribution is zero, i.e. if

\[
\int d\mathbf{Q} = 0
\]

(2)

then \(\mathbf{u} \) is independent of the coordinate origin, i.e. the
origin of \(\mathbf{r} \). Depending on the charge configuration, \(d\mathbf{Q} \) is
given by \(\rho d\Omega \), \(\sigma dA \) or \(\sigma ds \), where \(\rho \), \(\sigma \) and \(s \) are the volume
charge density, the surface charge density and the line charge density, respectively. \(\text{d}N, \text{d}A \) and \(\text{d}s \) represent the volume element, the surface element and the element of length.

From (1), it is evident that \(\vec{\mu} \) is dependent only upon the existence of a charge distribution and is independent of the surrounding media.

Polarizable Media

The polarization of dielectric bodies by the application of an electric field also produces a dipole moment \(\vec{u}_p \), which is defined as

\[
\vec{u}_p = \iiint \vec{P} \, \text{d}\Omega
\]

(3)

where \(\vec{P} \) represents the dielectric polarization, i.e. the dipole moment density. The volume integral is undertaken with respect to the volume of the body. For gaseous voids (\(\varepsilon_r = 1 \)), \(\vec{P} = 0 \) and thus \(\vec{u}_p = 0 \); i.e. a void in which no discharges have occurred has, at that instant, essentially zero dipole moment.

DIPOLe MOMENTS OF WALL-CHARGED VOIDS

We consider a spherical void of radius \(R \) embedded in a bulk dielectric. Hence with reference to spherical coordinates \(\rho, \theta, \phi \) having the sphere centre as origin, the void wall is represented by the surface \(r = R \).

The discharge development in the void is assumed to be axially symmetric, and hence the wall charge distribution \(\sigma(\theta) \) will exhibit the same symmetry. Thus to study the influence of the wall charge distribution on the void dipole moment, we will consider spherical caps of charge and evaluate the associated \(\vec{u} \). The caps are symmetrically located around the \(z \)-axis and subtend a polar angle \(\beta \), see Fig.1.

Owing to symmetry, the void dipole moment will have only a \(z \)-component, and thus we have

\[
\mu_z = \int z\sigma(\theta) \, \text{d}A
\]

(4)
or, in relation to spherical coordinates and the cap geometry,

\[\mu_z = 2\pi R^3 \int_0^\pi \sigma(\theta) \cos \theta \sin \theta d\theta \]

(5)

Although the net charge in the void is zero, we can quantify the charge involved in the dipole moment by referring to the magnitude of the charge \(Q_h \) (positive or negative) associated with a hemispherical wall. This can be evaluated from

\[Q_h = 2\pi R^2 \int_0^{\pi/2} \sigma(\theta) \sin \theta d\theta \]

(6)

With reference to the caps of charge, we will consider 3 surface charge distributions, viz., for \(0 \leq \theta \leq \beta \),

\[\sigma(\theta) = \sigma_0 \]

(7)

Fig. 1. Geometry of wall-charged void.
Table 1. Void dipole moment for different wall-charge distributions.

<table>
<thead>
<tr>
<th>$\sigma(\theta)$</th>
<th>μ_z/μ_{max}</th>
<th>μ_z/μ_{max}</th>
<th>μ_z/μ_{max}</th>
<th>μ_z/μ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0</td>
<td>0.50</td>
<td>0.85</td>
<td>0.93</td>
<td>0.98</td>
</tr>
<tr>
<td>$\sigma_0 \cos \theta$</td>
<td>0.68</td>
<td>0.91</td>
<td>0.96</td>
<td>0.99</td>
</tr>
<tr>
<td>$\sigma_0 \cos^2 \theta$</td>
<td>0.75</td>
<td>0.93</td>
<td>0.97</td>
<td>0.99</td>
</tr>
</tbody>
</table>

For $(\pi-\beta) \leq \theta \leq \pi$, the caps of charge are of the opposite polarity. Upon substituting for $\sigma(\theta)$ in (5) and (6) and evaluating the various integrals, we obtain the corresponding μ_z and Q_h.

It is obvious that, for a given distribution of surface charge, the greater the surface area involved the greater will be the magnitude of the associated dipole moment. Hence to illustrate the influence of both the functional and spatial distribution of σ, the maximum dipole moment μ_{max}, which may be associated with a cap of charge, has been taken as a reference value. For a fixed value of Q_h, μ_{max} is obtained by considering Q_h to be related to two point charges placed at the maximum distance apart in the axial direction. Thus for a spherical void μ_{max} is given by

$$\mu_{\text{max}} = 2RQ_h$$

Hence for any cap of charge, the influence of Q_h can be suppressed by considering the ratio (μ_z/μ_{max}), see Table 1.
In this Table, it is illustrated that, for a hemispherical configuration ($\beta = \pi/2$), μ_z increases by 50% as the σ-distribution becomes more non-uniform. In contrast, for small cap-angles ($\beta < \pi/12$), the dipole moments are virtually identical in magnitude. However, compared with the relevant $\beta = \pi/2$ value, relative increases in μ_z of between 30 to 100% are attained, with the greatest increase associated with the uniform σ-distribution. This trend is not unexpected, since separation between the positive and negative charge configurations increases as β reduces, and this in turn diminishes the effect of charge distribution.

DISCUSSION AND CONCLUSION

From a study of spherical voids, it is shown that, although the σ-distribution influences the dipole moment, the spatial extent of σ has a greater influence. This behaviour is not unexpected. For a void of fixed dimensions, the smaller the charged surface area, the greater is the effective separation between the positive and negative charges, and thus the greater the dipole moment.

In this preliminary study, the surface charge density has been taken as the independent variable. However, with reference to partial discharge activity, this is not the controlling parameter. In this case it is the internal field strength associated with the quenching of the discharge development; i.e. the wall charge field has to be of such a magnitude that this process occurs. The internal field distribution is known to be strongly influenced by the spatial extent of the wall charge, e.g., for $\beta = \pi/2$ and $\sigma(\theta) = \sigma_0 \cos \theta$, the internal field is uniform [4], while the other limit may be taken as the field between two point charges, see [5].

Consequently, it will be necessary to establish fully the relationship between the internal field and the surface charge density, prior to employing the general expression to evaluate the dipole moment associated with partial discharge activity.

REFERENCES

