A neural feedforward network with a polynomial nonlinearity

Hoffmann, Nils

Published in:
Proceedings of the IEEE-SP Workshop Neural Networks for Signal Processing

Link to article, DOI:
10.1109/NNSP.1992.253708

Publication date:
1992

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
INTRODUCTION

The problem of nonlinear, adaptive filtering has been dealt with using many

different filter architectures among which we find the neural feed-forward

network [4] and the Volterra filter [6]. In this paper a synthesis of these two

architectures is proposed in the form of a new feed-forward net designed for

the purpose of nonlinear filtering of time series. The general nonlinear filter

configuration is shown in Fig. 1. This configuration may perform tasks such

as prediction and identification of transfer functions [9]. The filter is designed

to implement the equation:

\[y(k) = F[z(k), z(k-1), \ldots, z(k-L+1); w] \] (1)

where \(F[\cdot] \) is an unknown nonlinear function parameterized by \(w \), \(k \) is the

discrete time index, and \(L \) is the filter order. Note, that we have restricted

...
the nonlinear mapping of $x(k)$ into $y(k)$ to be non-recursive which ensures the BIBO-stability of the filter. In the following sections a description of the new network architecture and algorithms for estimating the network parameters will be given along with an analysis of the computational complexity. Finally, we show a simulation in order to substantiate the usefulness of the proposed approach to nonlinear filtering.

NETWORK ARCHITECTURE

The proposed network architecture is shown in Fig. 2. The network, which may be viewed as a generalization of the Wiener model [6], is composed of three sections: A preprocessing unit consisting of L input neurons and p hidden neurons, a memoryless, multidimensional nonlinearity, and a linear output neuron. The main objective of the preprocessing is to extract the essential information contained in $x = \{x_j\} = [x(k), x(k-1), \ldots, x(k-L+1)]^T$ without loosing information concerning $d(k)$ and simultaneously ensuring that u has a dimension, $p \leq L$. The polynomial nonlinearity is memoryless and transforms the vector u into the vector v of dimension $q = C_{m+p,m}$, where $C_{n,k}$ denotes the binomial coefficient, and m is the maximum order of the polynomial terms u_r, $r = 1, \ldots, q$. Finally the linear neuron forms a weighted sum $y(k)$ of the terms in v. It is worth noting that for $m = 1$ the network is equal to a standard 2-layer feed-forward net. This implies a trade off between the complexity of the hidden layer and the complexity of the output neuron expressed in terms of p, m and q. The merit of the proposed architecture is that it shifts the complexity from the hidden neurons to the
linear output neuron, which is normally easier to adapt (fast convergence, no local minima, see e.g. [9], [1]).

Preprocessing network

The hidden nodes in the preprocessing network follow the equations:

\[u_i = \tanh(z_i), \quad z_i = \sum_{j=1}^{L} c_{ij} x_j, \quad i = 1, 2, \ldots, p \]

(2)

Where \(x_j = x(k - j + 1) \). In an earlier work [2] it was suggested to estimate the parameters \(c_{ij} \) solely on the basis of the input signal \(x(k) \) using principal component analysis (PCA) [3]. This approach has the obvious flaw of not using the desired signal in the calculation of \(c_{ij} \) which may lead to a significant loss of information concerning the mapping of \(x(k) \) into \(d(k) \) [2]. A way of overcoming this deficiency is to make \(c_{ij} \) adaptable and thus dependent on the overall performance criterion (i.e. the mean square error). This can be done using a variant of the well-known backpropagation algorithm [5]. However, it is a prerequisite that we develop a scheme for the efficient computation of the derivatives of the polynomial nonlinearity.

Polynomial nonlinearity

In accordance with the Wiener model [6] the nonlinearity combined with the linear output neuron is chosen such that \(y(k) \) is expressed as a truncated polynomial expansion:

\[y(k) = a_0 + \sum_{i_1=1}^{p} a_{1,i_1} P_1(u_{i_1}) + \sum_{i_1=1}^{p} \sum_{i_2=i_1+1}^{p} a_{2,i_1,i_2} P_1(u_{i_1})P_1(u_{i_2}) + \sum_{i_1=1}^{p} a_{2,i_1} P_2(u_{i_1}) + \cdots + \sum_{i_1=1}^{p} a_{m,i_1} P_m(u_{i_1}) \]

(3)

Where \(P_s(u) \) is a polynomial in \(u_s \) of order \(s \) and \(a_{s_1,s_2} \ldots \) are the weights in the output neuron. In this paper we will use a slightly different notation:

\[y(k) = \sum_{r=1}^{t} a_r \nu_r, \quad \nu_r = P_{s_1}(u_{s_1})P_{s_2}(u_{s_2}) \cdots P_{s_p}(u_{s_p}), \quad \sum_{i=1}^{p} s_i \leq m, \quad s_i \geq 0 \]

(4)

\(\nu_r \) contains all distinct products of the polynomials \(P_s(u) \). If \(P_s(u) = u^s \) Eq. (4) becomes a Volterra expansion. In the Wiener model it is assumed that the \(u_i \)'s are independent, Gaussian variables. This assumption leads to the choice of using the Hermite polynomials as the product terms, \(\nu_r \), in Eq. (4) consequently become orthogonal. Furthermore this entails that convergence in mean is assured for all values of \(u_i \) [6]. In general the distribution
of \(u \) is unknown which makes it impossible to find a set of orthogonal polynomials. However, due to the squashing functions in the hidden layer \(u_i \) is limited to the interval \([-1, 1]\). This makes the Chebyshev polynomials an attractive choice as they limit \(v_\eta \) to \([-1, 1]\). Furthermore they tend to be less correlated than the Volterra polynomials for most practical input distributions, partly due to the fact that the Volterra polynomials of even order contain a substantial mean value. This decreases the speed of convergence when adapting the output neuron using backpropagation. An alternative way of avoiding the problems of slow convergence for highly correlated \(v_\eta \) is to adapt the output neuron with a 2nd order algorithm of the Gauss-Newton type [7, Ch. 14].

The Chebyshev polynomials \(T_s(u_i) \) and their derivatives \(dT_s(u_i)/du_i \) may be obtained using the recurrence formulas:

\[
T_{s+1}(u) = 2uT_s(u) - T_{s-1}(u), \quad T_0(u) = 1, \quad T_1(u) = u
\]

\[
\frac{dT_{s+1}(u)}{du} = 2T_s(u) + 2u\frac{dT_s(u)}{du} - \frac{dT_{s-1}(u)}{du}, \quad \frac{dT_1(u)}{du} = 1, \quad \frac{dT_2(u)}{du} = 4u
\]

An efficient algorithm for calculation of the output terms \(v_\eta \) from the inputs \(u_i \) of the polynomial nonlinearity along with the derivatives \(\partial v_\eta / \partial u_i \) is not easily derived from Eq. (4). Instead it is proposed to picture the computations as a tree traversing procedure as shown in Fig. 3. The tree traversing is done as follows: Initially the value 1 is in the accumulator (this term is used to denote a temporary variable) and as we move downwards we multiply with the polynomials marked on the branches we follow. The tree is divided into layers at depths 1 \(\cdots \) \(p \) such that the first branch we traverse is a polynomial in \(u_1 \) of order \(s_1 \leq m \), the next branch a polynomial in \(u_2 \) of order \(s_2 \leq m - s_1 \) and so forth. At the terminal node the accumulator will be equal to an output term \(v_\eta \). Looking at the trees it should be easy to realize, that the derivatives \(\partial v_\eta / \partial u_i \) can be calculated using the same procedure. The only modification necessary is to replace the polynomials \(P_s(u_i) \) with the corresponding derivatives \(dP_s(u_i)/du_i \), \(s = 0, 1, \cdots, m \). That is, in order to calculate both the polynomial terms \(v_\eta \) and their derivatives \(\partial v_\eta / \partial u_i \) it is necessary to traverse one polynomial tree and \(p \) derivative trees. The pseudo code for the tree traversing procedure is very simple as shown below (Note that the code needs some (immaterial) modifications when implemented with variable \(p \):
Figure 3: Calculation trees for calculating the polynomial terms and their derivatives. Maximum order $m = 3$, no. of input variables $p = 2$, and no. of output variables $q = 10$.
accc = 1
r = 1
for s1 = 0, 1, ..., m
 acc = T_{s1}(u_1) \cdot acc
for s2 = 0, 1, ..., m - s1
 acc = T_{s2}(u_2) \cdot acc
for s3 = 0, 1, ..., m - s1 - s2
 ...
 for sp = 0, 1, ..., m - \sum_{n=1}^{r-1} s_n
 v_r = T_{s_p}(u_p) \cdot acc
 \tau = \tau + 1

WEIGHT ESTIMATION ALGORITHM

The weights in the hidden neurons as well as in the output neuron may readily be estimated using a modified \(\alpha \)-LMS algorithm [8]:

\[
\Delta \mathbf{w} = \alpha \epsilon \frac{\partial y}{\partial \mathbf{w}}^2, \quad \mathbf{w} = [c_{11}, \ldots, c_{pL}, a_1, \ldots, a_t]^T
\]

(7)

\(\Delta \mathbf{w} = \mathbf{w}(k + 1) - \mathbf{w}(k) \) is the change in the weights due to updating and \(\alpha \) is the normalized step-size. The algorithm remains stable for \(\alpha \in [0, 2] \), however selecting \(\alpha > 1 \) is not sensible [8]. Time index is omitted as all terms are evaluated at time \(k \). The modification consists of replacing the input vector with the gradient \(\partial y / \partial \mathbf{w} \) thus making the algorithm applicable to nonlinear systems. The partial derivatives are easy to find using the chain rule:

\[
\frac{\partial y}{\partial c_{ij}} = x_j \sum_{r=1}^{q} a_r \frac{\partial v_r}{\partial u_i} = x_j g_i, \quad \frac{\partial y}{\partial a_r} = v_r
\]

(8)

This yields the following update equations:

\[
\frac{\partial y}{\partial \mathbf{w}} = \sum_{r=1}^{q} v_r^2 + \sum_{i=1}^{p} g_i^2 \cdot \sum_{j=1}^{L} x_j^2, \quad g_i = (1 - u_i^2) \sum_{r=1}^{q} a_r \frac{\partial v_r}{\partial u_i}
\]

(9)

\[
\Delta a_r = \alpha \epsilon \frac{v_r}{\left| \frac{\partial y}{\partial \mathbf{w}} \right|^2}, \quad r = 1, \ldots, q
\]

(10)

\[
\Delta c_{ij} = \alpha \epsilon \frac{x_j g_i}{\left| \frac{\partial y}{\partial \mathbf{w}} \right|^2}, \quad i = 1, \ldots, p, \quad j = 1, \ldots, L
\]

(11)

COMPLEXITY

In order to properly evaluate the proposed network and weight estimation algorithm it is necessary to obtain an estimate of the computational complexity e.g. in terms of the number of multiplications/divisions needed in one
iteration of filtering and adaptation. For this purpose we use the calculation trees in Fig. 3 and state certain facts:

- There is $C_{m+n,m} = \binom{m+n}{m}$ nodes at depth n in the tree, $n \in \{1, \ldots, p\}$ [6].
- The total number of multiplications in the tree is equal to the number of nodes minus 1.
- Calculation of p Chebyshev polynomials up to order m requires $p(m-1)$ effective multiplications (cf. Eq. 5) (i.e. multiplications with 1 and 2 are not counted).
- Calculation of p derivatives of Chebyshev polynomials up to order m requires $p(m-2)$ effective multiplications (i.e. multiplications with 1, 2 and 4 are not counted). (cf. Eq. 6).

From Fig. 3 it should be evident that the number of multiplications with 1 going from depth n to depth $n+1$ in the polynomial tree is equal to the number of nodes at depth n. The total number of times the accumulator is multiplied by 1 is thus equal to the total number of nodes minus the number of nodes in the final layer ($n = p$). The number of times where the accumulator is equal to 1 and is multiplied by a polynomial $P_s(u_i) \neq 1$ is mp. Using all these facts it follows that the number of effective multiplications is:

$$N_P = \binom{m+p}{m} - 1 - mp + p(m-1)$$

$$= \binom{m+p}{m} - (p+1) = q - (p+1), \quad m \geq 1, \quad p \geq 1 \quad (12)$$

where q is the dimension of v. It is easy to show, that N_P reaches the lower bound on the number of multiplications necessary to calculate v. Using similar arguments it can be shown that the number of effective calculations in the derivative tree is (The derivatives are simply polynomials of order $m-1$):

$$N_D = \binom{m+p-1}{m-1} - (p+1)$$

$$= q - \frac{m}{m+p} - (p+1), \quad m \geq 2, \quad p \geq 1 \quad (13)$$

Counting the number N_N of multiplications in the adaptation and filtering by the neurons is straightforward keeping in mind, that $\partial e_r/\partial u_i = 0$ in a fraction of $p/(m+p)$ times.

$$N_N = \binom{mp}{m+p} + 3) q + 2(p+1)(L+1) - L + 3, \quad m \geq 2, \quad p \geq 1 \quad (14)$$
The total number of multiplications per iteration turns out to be:

\[
N = (2s + 4)q + 2(p + 1)(L + 1) - (p + 1)^2 - L + 3,
\]
\[
m \geq 2, \quad p \geq 1 \tag{15}
\]

Normally (cf. Section) \(q \) is much larger than \(L \) and \(p \). That is, for most \(m \)
\(q \min(m, p) \gg pL \), in which case \((2mp/(m + p) + 4)q\) is a rough estimate of
the number of multiplications. This emphasizes the main difficulty with this
kind of network, which is the fast growth of \(q \) with growing \(m \) and \(p \). If the
estimation of the weights in the hidden neurons is performed using PCA the
complexity is roughly \(4q \) multiplications per iteration, i.e. the relative change
in complexity when implementing the backpropagation is:

\[
(4 + \frac{2mp}{m + p}) q(4q)^{-1} \leq 1 + \frac{1}{2} \min(m, p) \tag{16}
\]

SIMULATIONS

In order to illustrate the benefits of the proposed method of preprocessing
compared to the PCA method, we have simulated a simple example of system
identification. The unknown system is a network as shown in Fig. 2 with
parameters

\[
C = \{c_{ij}\} = \begin{bmatrix} 0.3 & -0.25 & 0.1 & -0.15 \\ -0.2 & -0.1 & 0.2 & -0.1 \end{bmatrix} \tag{17}
\]
\[
a = \{a_i\} = \begin{bmatrix} 0.2 & 0.5 & -0.4 & 0.7 & 0.6 & -0.8 \end{bmatrix}^T \tag{18}
\]

Implying that \(p = 2, \quad L = 4, \quad m = 2 \), and \(q = C_{2+2,2} = 6 \). The input
signal \(z(k) \) is a colored sequence which is obtained by filtering zero mean
white Gaussian noise with a 2nd order butterworth lowpass filter (cutoff at
0.15fs, where \(f_s \) denotes the sampling frequency). The two networks used for
the identification were given the same architecture as the unknown system
(i.e. \(p = 2, \quad L = 4, \quad m = 2 \)), and the normalized step-size \(\alpha \) was set to
0.3. A set of 200 samples was used to train the networks, and after each
pass of the entire set the performance index \(E = e / d \) was calculated. The
standard deviations \(\sigma_e, \sigma_d \) of the cross-validation error and the desired signal
were estimated using an independent set of 200 samples. Fig. 4 shows how
the convergence of \(E \) depends on the choice of preprocessing method. The
network using PCA displays a fast convergence but at the expense of a high
final error index. Note that this network is linear in the parameters i.e.
there are no local minima, and consequently there would be no significant
decrease of \(E \) even if the number of passes was increased. The proposed net
converges slower but eventually it reaches the optimal solution \(E = 0 \), not
shown in Fig. 4) unless the weight estimation algorithm is caught up in a
local minimum.
CONCLUSION

In this paper a new neural network based on the Wiener model has been proposed. The network is composed of a hidden layer of preprocessing neurons followed by a polynomial nonlinearity and a linear output neuron. In contrast to earlier suggestions [2] we try to solve the problem of finding an appropriate preprocessing method by using a modified backpropagation algorithm. It is shown by the use of calculation trees, that the proposed approach is simple to implement, and that the computational complexity is not much larger than for the alternative method of using PCA to determine the weights in the preprocessing network. Finally, a simulation has been given which indicates superior performance of the proposed network compared to the PCA network.

ACKNOWLEDGEMENTS

I would like to thank Lars Kai Hansen, Jan Larsen, Peter Koefoed Møller, and John Aasted Sørensen for helpfull comments on this paper.

REFERENCES

