The field enhancement factor of sand-blasted electrodes

McAllister, Iain Wilson; Vibholm (fratrådt), Svend

Published in:
I E E E International Symposium on Electrical Insulation. Conference Record

Link to article, DOI:
10.1109/ELINSL.1992.246995

Publication date:
1992

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Abstract: A sample of six sand-blasted electrodes has been subjected to both mechanical and electrical investigations. For this sample, the mean electric field enhancement factor is found to be 6.6.

Introduction

All practical conductor surfaces possess an inherent microscopic roughness, the dimensions of which are dependent on the production processes utilized, see [1]. This roughness leads to a perturbation of the macroscopic electric field such that, for the same macroscopic conductor geometry, the maximum field strength \(E_{\text{max}} \) of the rough surface will be greater than the maximum field strength \(E_a \) of the corresponding smooth surface. This increase in field strength due to surface roughness can be quantified in terms of a field enhancement factor \(m \), where \(m \) is defined as

\[
m = \frac{E_{\text{max}}}{E_a}
\]

with \(m \geq 1 \). In general the \(m \) values associated with practical surfaces are unknown.

Recently, McAllister and Crichton proposed a method to determine the \(m \) value of a rough conductor surface [2]. Owing to the experimental procedure employed, this \(m \) value represents an effective value for the surface as a whole. In the present paper the method, which is based upon the detection of discharge onset in a gaseous medium at the surface in question, is used to investigate the scatter in \(m \) for a particular surface treatment.

When the surfaces of a series of conductors are mechanically treated, the resultant microscopic surface geometries will be similar, but not identical. As a consequence of this spread in the geometric characteristics of the roughened surfaces, the \(m \) values associated with nominally identical conductors will also exhibit a scatter. To determine this scatter for sand-blasting, a sample of six electrodes has been examined both electrically and mechanically. The mechanical study relates to the basic surface roughness parameters, \(R_t \) and \(R_s \) [3].

The results indicate that, as the electrodes were treated at different times during the lifetime of the sand, there arises a distinct variation in the recorded surface roughness parameters. However this variation does not manifest itself so clearly in relation to the electrically-determined field-enhancement factors, which lie in the range 4.8 - 8.5, with a mean value of 6.6.

Theoretical Aspects

The experimental method is based upon the determination of the surface roughness factor \(\xi \) for the surface in question. This dimensionless parameter expresses the reduction in the insulation strength of a compressed gas system from that predicted theoretically on the basis of the streamer criterion applied to the idealized macroscopic geometry [4]. Hence \(\xi \) can be expressed as

\[
\xi = \frac{U_o}{U_{ot}}
\]

where \(U_o \) is the actual discharge onset voltage while \(U_{ot} \) is the theoretically predicted value associated with the idealized (i.e. smooth) electrode. From the theory of discharge onset in a gaseous medium at a rough surface, it can be shown that, at high gas pressure, \(\xi \) tends to a limiting value, \(\xi_{\text{lim}} \), and that this value is in fact equal to the reciprocal of the field enhancement factor [2], i.e.

\[
\xi_{\text{lim}} = \frac{1}{m}
\]

Although the value of \(\xi \) for a practical surface can only be determined experimentally, an appreciation of the variation of \(\xi \) with gas pressure \(p \) can be gained by considering simple models of a rough surface. A typical variation of \(\xi \) for SF\(_6\) is shown in Fig.1 for a hemispherical protrusion of radius \(R \). For such a protrusion \(m = 3 \) and from Fig.1 it is evident that as \(pR \to \infty \), \(\xi \to 1/3 \).

With a knowledge of the test gap geometry and the electrical characteristics of the test gas, the calculation of \(U_{ot} \) is straightforward. Full details can be found in [2]. With respect to the determination of \(U_o \), however, it is in practice only possible to perform experiments over a finite range of gas pressure, typically 0.1 \(\text{p/MPa} \times 1 \). In these conditions it is necessary to undertake a regression analysis of the experimental data to obtain \(\xi_{\text{lim}} \) and thus the derived \(m \) value has an inherent uncertainty.

Experimental Measurements

Six circular cylindrical electrodes (radius 5 \(\text{mm} \), length 450 \(\text{mm} \)) were sand-blasted by courtesy of Siemens AG (Berlin). These electrodes were treated at different times during the lifetime of the sand magazine, and thus the electrodes were numbered sequentially in the order in which they were received at our laboratory. Following receipt, each electrode was cleaned in an ultrason-
ic bath, and thereafter stored in a protective envelope prior to use.

Mechanical Study

Measurements of the surface structure were undertaken using a high precision Perthometer, type WVR. The arm stylus had a tip radius of curvature of 3 μm and a tip angle of 90°. The output signal from the roughness meter was digitized and analysed subsequently to yield values for the surface parameters \(R_a \) and \(R_t \); see [3] for definitions. The measuring system was calibrated against a standard (10 μm range) roughness specimen.

To sample the surface topography adequately, four 30-mm scans equally spaced around the electrode circumference were made on the centre section of each electrode. For the purposes of analysis, the 30-mm scans were sub-divided into 16 overlapping sections so that there was always the possibility of neighbouring peaks and troughs being taken together. For each electrode, the values of \(R_a \) and \(R_t \) derived for each of the 64 sub-scans were then treated statistically. The main data of this analysis are listed in Table 1.

As could be expected with sand-blasting, there is a scatter in the \(R_a \) and \(R_t \) values associated with the six bars. However, it is clear that bars 1 & 2 were not roughened to the same extent as the other four, see Table 1.

Electrical Study

The discharge measurements were undertaken with a coaxial cylinder gap over the pressure range 0.1 - 0.9 MPa using SF\(_6\) as the test gas. The roughened inner electrode had a nominal radius of 5 mm while the gap spacing was 25 mm. The length of the constant diameter section of the outer electrode was 80 mm whereas that of the inner was 450 mm. The overall length of the flared, outer electrode was 160 mm. A coaxial test gap was selected as this geometry exhibits a large surface area associated with \(E_a \).

Discharge onset (corona or direct-breakdown) was detected oscillographically for a negative DC applied voltage. No irradiation was used and the applied voltage was raised at ≈1 kV/min. In the absence of direct breakdown at the higher gas pressures, discharge onset was identified with the initial appearance of pre-breakdown current pulses, see [5,6].

A typical variation of the measured onset voltage with gas pressure is shown in Fig.2. To indicate the deleterious effect of surface roughness upon insulating strength, the calculated onset voltage characteristic for the idealized macroscopic geometry, \(U_{ot} \), is included for comparison. This latter curve is derived assuming \(\xi = 1 \), see [4] for details. From (2) it is evident that, by combining the results in Fig.2, \(\xi \) can be determined.

As seen from Fig.2 however, the \(U_o \) measurements were performed at pressures exceeding 0.1 MPa and thus the non-ideal gas behaviour of SF\(_6\) must be taken into account in the \(\xi \) evaluation. To do so we introduce the compressibility-corrected gas pressure \(p_z \), with \(p_z \) defined as

\[
p_z = \frac{p}{Z(p,T)}
\]

where \(Z(p,T) \) is the compressibility factor (71) for the gas and \(T \) the absolute gas temperature. In this study, the onset measurements were undertaken at room temperature which lay in the range 20°C - 25°C. For any one set of measurements, the gas temperature fell by ≈1.5 °C during the course of the experiment. Further details of this aspect of the \(\xi \) evaluation can be found in [2]. The result of such an evaluation is shown in Fig.3, which now illustrates the variation of \(\xi \) with \(p_z \).

Regression Analysis

On the basis of the fact that \(\xi \) tends asymptotically to a particular limiting value, see Fig.1, the regression analysis was based on an expression of the form

\[
\xi(p_z) = \xi_{lim} + f(p_z)
\]

with the function \(f(p_z) \rightarrow 0 \) monotonically as \(p_z \rightarrow \infty \). For the present data, an exponential function was found to

Fig.2. Discharge onset voltage \(U_o \) in SF\(_6\) as a function of gas pressure \(p \).

Fig.3. Variation of surface roughness factor \(\xi \) with compressibility-corrected gas pressure \(p_z \).
be appropriate and hence the relationship used in the regression analysis was

$$\xi(p_x) = \sigma + a \exp(bp_x)$$ \hspace{1cm} (6)

where σ and b are the regression coefficients and σ is a constant.

A least-squares fitting technique was employed to determine σ and b and the coefficient of determination r^2 was employed to assess the goodness-of-fit. In performing the analysis, the value of σ was varied until r^2 displayed a maximum value, see Fig. 4. The corresponding σ value is then taken to be ξ_{lim}.

From Fig. 4, it is evident that the σ, r^2 curve shows a shallow maximum. This behaviour has been used to associate a measure of uncertainty in the determination of ξ_{lim}. For an r^2 effectively equal to $(r^2)_{\text{max}}$, i.e. agreement to three significant figures, the variation in σ is on average 10%.

The values of m derived from the ξ_{lim} evaluation are listed in Table 1, from which the mean field enhancement factor \bar{m} is found to be 6.6, with a standard deviation $\sigma(m) = 1.2$. Thus the scatter in the m values is greater than the uncertainty in the ξ_{lim} determination. Although there is an increase in the R_a and R_t values with sand 'aging', such a trend is less certain with respect to the corresponding m values.

Conclusion

With a sample of six electrodes, the field enhancement factors associated with a sand-blasting treatment have been found to lie in the range 4.8 - 8.5, with a mean value of 6.6. The mechanical surface parameters indicated a sand aging effect.

Acknowledgments

The authors wish to thank the Electric Power Research Institute for supporting this work through project RP2669-1 (Mr. G. Addis, project manager) and Siemens AG, Schaltwerk Hochspannung, Berlin for sand-blasting the electrodes.

Table 1. Mean values of the surface parameters R_a and R_t for each bar together with the corresponding field enhancement factor.

<table>
<thead>
<tr>
<th>bar no.</th>
<th>R_a μm</th>
<th>s_a μm</th>
<th>R_t μm</th>
<th>s_t μm</th>
<th>m</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44.3</td>
<td>14.2</td>
<td>7.1</td>
<td>1.1</td>
<td>4.8</td>
<td>0.997</td>
</tr>
<tr>
<td>2</td>
<td>50.8</td>
<td>16.5</td>
<td>8.0</td>
<td>1.7</td>
<td>6.6</td>
<td>0.996</td>
</tr>
<tr>
<td>3</td>
<td>63.1</td>
<td>18.7</td>
<td>10.4</td>
<td>2.1</td>
<td>6.7</td>
<td>0.996</td>
</tr>
<tr>
<td>4</td>
<td>70.1</td>
<td>18.3</td>
<td>11.5</td>
<td>2.2</td>
<td>6.2</td>
<td>0.998</td>
</tr>
<tr>
<td>5</td>
<td>63.5</td>
<td>19.6</td>
<td>10.9</td>
<td>2.2</td>
<td>8.5</td>
<td>0.998</td>
</tr>
<tr>
<td>6</td>
<td>65.5</td>
<td>16.4</td>
<td>11.0</td>
<td>1.7</td>
<td>7.0</td>
<td>0.999</td>
</tr>
</tbody>
</table>

s_a and s_t are the standard deviations associated with R_a and R_t, respectively. $\bar{m} = 6.6$, $\sigma(m) = 1.2$.

For roughness measurements, the cut-off was 2.5 mm.

References

