Temporal and spatial development of partial discharges in spherical voids in epoxy related to the detected electrical signal.

Holbøll, Joachim; Braun, J.M; Fujimoto, N.; Stone, G.C.

Published in:
Proceedings of the conference on Electrical Insulation and Dielectric Phenomena

Publication date:
1991

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
TEMPORAL AND SPATIAL DEVELOPMENT OF PARTIAL DISCHARGES IN SPHERICAL VOIDS IN EPOXY RELATED TO THE DETECTED ELECTRICAL SIGNAL.

J.T. Holbøll
J.M. Braun, N. Fujimoto, G.C. Stone

Technical University of Denmark
Ontario Hydro
Electric Power Engineering Dept.
Toronto, Canada

Lyngby, Denmark

ABSTRACT

Investigations were made on the temporal and spatial development of partial discharges (PD) in spherical voids (≈ 1-5 mm) in clear epoxy plated.

Two very different types of discharges were found with respect to charge image, luminosity and propagation time. The electrical signal simultaneously displayed on a 1 GHz real-time oscilloscope, shows pulses with rise times in the ns and sub-ns range of varying magnitude and shape. Pulse phase/height analyses were performed showing a universal pattern for all voids.

A relationship was established between the shape of the detected pulse phase/height analyses and optical characteristics of the discharge phenomena.

INTRODUCTION

PD testing of HV equipment with sensitive equipment often results in the detection of electrical pulses of varying shape and magnitude. PD analysis performed on these pulses show some unique patterns, which sometimes can be related to special types of defects. However, the relationship between the physical processes taking place inside the material and the detected electrical signal is somewhat unclear.

This report presents some of the results from investigations on PD in defined defects (1 single spherical void in clear epoxy, 1-5 mm in diameter) under a 60Hz AC voltage, high enough to cause spontaneous discharge. In this way the development of the discharges is kept as constant.
MEASUREMENT SYSTEM

The voids were made by injecting clean, dry air in an Bisphenol A type epoxy before curing with an acid anhydride curing agent, resulting in a natural void shape and void surface. The gas composition and gas pressure inside the void was not known, but recent investigations [2, 3] indicate that the major part is nitrogen at a slight under-pressure.

The discharge image was detected with an Imacon 790 Streak Camera via an optical lens, prism and mirror system as described in [1]. Images with wavelengths in the visible range could be recorded in single frame or in streak mode. In single frame mode, a two-directional view gave the capability to determine the spatial development of the discharge in three dimensions. The temporal development was observed in streak mode, with the image collimated in the field direction to a narrow band, hereby also capturing light emitted from points not on the optical axis and reducing geometrical effects on the streak image. Images were recorded only from PD in 3.5 and 5mm voids. The intensity of the emitted light from a 1mm void was too low for any analysis to be made.

The electrical signal was detected by direct voltage measurement across a 50 Ohm impedance in the specimen ground lead. A 1 GHz real time oscilloscope measured the PD voltage pulse. In this way ultra wide band measurements (UWB, 1–750MHz) were possible. The oscilloscope also was configured to show the timing of the PD pulse with respect to the phase of the applied AC Voltage [1].

By manual reading of these data it was possible to determine pulse magnitude as well as pulse width and phase of each pulse and relate these data to a single discharge image. Thus, the apparent charge could be calculated by integrating over the pulse, giving a true phase/height and phase/charge distribution. In the following these expressions refer to the peak magnitude of the current pulses, and time integrated current pulse, respectively.

RESULTS

Pulse type

For all samples, two very different types of pulses were found: a fast type A (fig.1a) with under 500ps rise-time, 700ps pulse width and a nearly constant maximal pulse magnitude and a 'slow' type B (fig.1b) with more than 1ns rise-time, 2-10ns pulse width and varying pulse magnitude always 15-40dB under the magnitude of type A pulses. Similar observations have been made in previous investigations [4].
a) Fast type A pulse, rise-time: <500ps, width: 700ps.
b) 'Slow' type B pulse, rise-time: >1ns, width: 2-10ns.

Fig.1.a-b: The two typical pulse shapes. The origin of the sine indicates the phase of the AC voltage at which the PD occurred.

Temporal and Spatial Development of Discharges

The optical investigations showed two different types of discharge shown in fig.2a-c and fig.3a-b (3.5mm void, applied voltage 19 kV, AC): Streamer-like discharges, forming a bright channel either across the void or close to the surface; and more diffuse discharges, covering the void with significantly less intensity.

The observed streamer discharges could be directly related to the type A pulses. No difference in the electrical signal could be seen between the discharges occurring across the void or along the void surface. A be seen from the streak image, the propagation time of the streamer discharge was less than the resolution of the recording system, i.e. <2 ns. After 15ns the detectable light emission had ended and only microwave pre-breakdown emission could be seen 1-2ns before breakdown. The shape was independent of the polarity of the applied voltage.

The diffuse discharges always resulted in a slow type B pulse. No detection inside the void could be observed. The discharges were typically formed over a period of several nanoseconds with a duration of 5-10ns and considerable less intensity. In some cases a slight motion towards...
| **Streamer Discharges**
| **(fast pulses, type A)** | **Diffuse Discharges**
| **(slow pulses, type B)** |
| ![Streamer Across the void](image) | ![Diffuse, low intensity discharge covering most of the void](image) |
| ![Streamer Along the surface](image) | ![Other example](image) |

a) Streamer, Across the void
b) Streamer, Along the surface
c) Diffuse, low intensity discharge covering most of the void. High optical gain.

Fig. 2a-c:
Spatial development. Images are taken from 2 directions perpendicular to each other. The surface discharge clearly illustrates the limited view field caused by the lens effect of the void.

Fig. 3a-b:
Temporal development, streak image. Time origin to the right. The light intensities are not comparable since the optical gain was some orders of magnitude higher for the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 07:53:52 UTC from IEEE Xplore. Restrictions apply.
PD Analyses

Fig. 4 illustrates the relationship between the electrical and the optical information in a pulse phase/height diagram. The analysis was based on manual reading of 300 pulses and corresponding discharge images. Ring patterns were typical for all void diameters, similar patterns reported from PD analyses on full size insulation [4]. As can be seen in the figure, streamer discharges and diffuse low intensity discharges are directly related to a specific area in the diagram. The distribution is symmetrical for both polarities. Clearly visible is the inception point of streamer discharges ca. 2 ms after onset inception. A distinction between surface discharges and discharges across the void did not show significant difference. However, at some voltages the discharges across the void tended to occur close to the inception point. Fig. 4 shows some discharges that could not be categorized as one of the two main discharge types. The spatial and temporal development of these discharges was similar to the development of streamer discharges, but with lower intensity.

This pattern was only observed in the UWB detected phase/height diagram, a phase/charge analysis based on the same data showed that the ring pattern had been reduced to a cluster formed charge distribution. Correlations between discharge image and a specific area could not be established.
DISCUSSION

Characteristic for all voids investigated was the parallel occurrence of two very different types of discharges.

The observed streamer discharges are characterized by a sub-ns propagation time, missing pre-breakdown emission and an inception point after the AC zero crossing. The short propagation time is most likely caused by a strong field inside the void, possibly due to the lack of initial electrons at PD onset voltage as verified by the late occurrence with respect to the AC phase. The inception voltage for the 3.5mm void was measured 6 kV by emitting initial electrons using X-rays. That means that the electrical stress inside the void at 19 kV may be up to 200% above the inception field (space and surface charges not considered). Earlier investigations of discharges in a homogeneous field [6] showed a streamer propagation time in Nitrogen of about 1 ns at 100% overvoltage and a secondary streamer to be formed. This is in very good agreement with the observed phenomena in the present experiments. The reason for not detected pre-breakdown emission is most likely the limited optical bandwidth of the system and the absorption of the emitted light under 430 nm wavelength in the epoxy [7]. According to [8] the wavelength of the pre-breakdown luminosity in Nitrogen is under 450 nm. At the moment of the breakdown the luminosity extends to the visible range and the intensity increases by several orders of magnitude, in agreement with the observed phenomena.

The observed diffuse discharges are characterized by a propagation time of several nanoseconds, a very low luminosity and their occurrence over a wide range in the phase/height diagram. Unless other, not considered phenomena have influence on the development of the 'slow' diffuse discharges, these are most likely formed in a weak field, i.e. near the PD onset voltage, after previous discharges, or in a reduced field caused by space charges, surface charges or by temporary changes on the void surface. The diffuse discharge image and the spread pulse analysis indicate processes of high complexity. Real time detection of all discharges for a number of AC cycles would be useful to approach this problem. Another interesting aspect that needs some further investigations may be the apparent correlation between luminosity and current.

All optical investigations were made on large voids compared to the critical diameter in full size insulation. Nevertheless, the electric measurements on pulses from PD in a 1 mm void showed the same pulse shapes and the same typical patterns in the PD analyses as for the 3-5mm voids, so the assumption of similar processes taking place inside small voids must be considered realistic.
It should be noticed that the shown relationship between the electrical and the optical information is clearly observable only with the ultra wide b (UWB) detected data (phase/height). Based on integrated data (phase/charge) this relationship is not observable. This fact may be interesting with respect to recognition of PD signals compared to electrical noise for identification of defect types in insulation.

CONCLUSION

The investigations on the spatial and the temporal development of PI voids in epoxy showed two different types of discharges.

a) Streamer discharges with sub-ns propagation times were observed to straight through the void and close to the void surface. They could be related to very fast pulses with sub-ns rise time, sub-ns pulse width near lasts constant pulse magnitude. The discharge location had no influence on the electric pulse characteristics.

b) Diffuse discharges across most of the void were observed with luminosity some orders of magnitude lower than for streamer discharge and with several nanoseconds propagation time. The corresponding electric pulses on the electrodes had 5–10ns risetimes and lower and varying pulse magnitudes.

The recording of pulse magnitude, pulse width, and pulse phase simultaneous with the discharge image in either frame or streak mode it possible to perform true phase/height as well as true phase/charge analyses to relate each discharge type to a specific area in the phase/height diagram. The phase/height analyses showed a symmetrical ring pattern reported earlier. The formation of this pattern can partly be explained by the parallel occurrence of the two discharge types.

Comparison with phase resolved charge analyses showed that the detection of peak current by UWB measurements gives more information than corresponding integrated current as detected by systems of a very limited bandwidth. Moreover, the relationship between PD analysis and discharge type only could be established based on the true phase/height analysis.

The influence of the two types of discharges on the void surface i.e. ag of the material is not known and needs some further investigation. Bu
ACKNOWLEDGMENTS

The main author would like to thank The Danish National Research Council for their financial support, without which this work could not have been performed.

The experimental work was done at Ontario Hydro.

REFERENCES

