Coupling Effects in Multibeam Reflector Antennas

Schjær-Jacobsen, Hans; Lessow, H.A.; Andersen, J. Bach

Published in:
3rd European Microwave Conference

Link to article, DOI:
10.1109/EUMA.1973.331800

Publication date:
1973

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
COUPLING EFFECTS IN MULTIBEAM REFLECTOR ANTENNAS

H. Schjør-Jacobsen, H.A. Lessow, J. Bach Andersen

Laboratory of Electromagnetic Theory
Technical University of Denmark
DK-2800, Lyngby, Denmark

SUMMARY

New results and conceptual design principles concerning multiple beam reflector antennas in which coupling effects are of major influence on antenna performance are presented.

Special attention is paid to a certain class of feeds consisting of minimum scattering antennas (MSA's). The mutual impedance between two identical MSA's is expressed as an integral over their power patterns including complex angles [1]. For a given element spacing power patterns that minimize mutual coupling may be found. However, the patterns which lead to minimum coupling may not be optimum when the illumination of the reflector is considered. This is accounted for by constraining the efficiency for a given f/D-ratio.

As an example of circularly polarized feed antennas detailed numerical analysis of coupling between arbitrarily oriented crossed dipoles is presented. In evaluating the scattered field from crossed dipoles the feeding network is included since a crossed dipole is never an MSA.

The secondary field pattern is calculated by a two-dimensional Romberg-integration of the complex current distribution on the reflector found by the physical optics approximation and contour plots of gain and polarization loss are discussed. Also the scattered near field in the focal region is calculated in order to evaluate coupling between feed elements due to the presence of the reflector.

Finally examples for coverage of specific areas on earth from a synchronous orbit satellite are presented.


This work has been supported by ESTEC/Contract No. 1698/72 AA.