Heterologous Production of Polyketides in Fungi

Mølgaard, Louise; Hansen, Bjarne Gram; Mortensen, Uffe Hasbro; Patil, Kiran Raosaheb

Publication date: 2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Heterologous Production of Polyketides in Fungi

Louise Mølgaard, Bjarne G. Hansen, Uffe H. Mortensen and Kiran R. Patil

Polyketides are the source of some of the most potent antibiotics and anticancer agents available today. They constitute a large group of natural compounds, produced primarily by fungi and bacteria. However, the productivity is often very low in the native producer. Thus, expression of polyketide gene clusters in an industrially relevant microorganism presents a great potential. Towards fulfilling this potential we are working with the three fungal species, viz. S. cerevisiae, A. niger and A. nidulans, which are all well suited as hosts for polyketide production. The overall goal of the project is to construct microbial super hosts through the use of state of the art genetic engineering and in silico modeling tools.

Polyketides belong to one of nature’s most diversified groups of compounds. Among the polyketides can be named the cholesterol lowering agent lovastatin and the antibiotic erythromycin. We are studying two polyketides: mycophenolic acid (MPA) which is used as an immunosuppressant and 6-methylsalisylic acid (6-MSA) that has antibiotic properties. By studying three different species capable of producing heterologously expressed polyketides, we aim at designing more efficient polyketide cell factories that will work in a plug-and-play fashion. The overall strategy towards achieving this goal is illustrated in figure 1.

Targeted Integration of the 6-MSA PKS in A. nidulans

Targeted Integration of the 6-MSA PKS and npgA PPTase in S. cerevisiae

The stable heterologous production of polyketides in S. cerevisiae and A. nidulans presents the first step in the construction of efficient cell factories. Polyketide synthases are proving to be the source of several new medically relevant compounds. Having a polyketide cell factory platform will therefore be a significant step towards economic and sustainable production of this important class of natural products.