Second-order polarization-mode dispersion in photonic crystal fibers

Larsen, T; Bjarklev, Anders Overgaard; Peterson, A; Folkenberg, J

Published in:

Publication date:
2003

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
While the polarization decorrelation length is the scale on which the ensemble average
$\langle S_l(z) \rangle$
reaches its asymptotic value of 0, the diffusion length d_d is defined as the distance it takes for the variable Stokes parameter S_d to reach its asymptotic value of 1/3. This asymptotic value is 1/3 since the Stokes vectors are asymptotically uniformly distributed on the Poincaré sphere. We define the diffusion length d_d to be the maximum of the values d_l, d_d, and d_L. In Fig. 2, we show the results for different values of τ / ϵ. These results show that as the ratio τ / ϵ converges to the isotropic value 1, the local diffusion length becomes proportional to the fiber decorrelation length h_{decor}. However, the diffusion length has the same convex dependence on h_{decor} / L_g for all values of τ / ϵ, except for the isotropic case $\tau / \epsilon = 1$, which is a singular limit. Thus, a small ellipticity has no significant effect on system behavior as compared to the case of only linear birefringence. However, the variation in the diffusion lengths for small τ / ϵ and ϵ becomes larger indicating that the interaction between nonlinearity and PMD is changed as the ellipticity is increased.

In conclusion, we have described the dependence of both the polarization decorrelation length and the diffusion length on the amount of ellipticity present in an optical fiber. These results demonstrate in particular that the expression for the DGD in terms of the fiber decorrelation length does not depend on the strength of ellipticity. However, the diffusion length has the same convex dependence on h_{decor} / L_g for all values of τ / ϵ, except for the isotropic case $\tau / \epsilon = 1$, which is a singular limit. Thus, a small ellipticity has no significant effect on system behavior as compared to the case of only linear birefringence. However, the variation in the diffusion lengths for small τ / ϵ and ϵ becomes larger indicating that the interaction between nonlinearity and PMD is changed as the ellipticity is increased.

References

Second-Order Polarization-Mode Dispersion in Photonic Crystal Fibers

We report the first experimental measurements of second-order polarization-mode dispersion (PMD) in two successive 900-meter pulls of silica Photonic Crystal Fiber.

Introduction

Photonic Crystal Fibers (PCFs) form a new class of optical fibers, which have attracted significant attention during the last few years [1,2,3]. PCFs are silica fibers with a large number of air-holes located in the cladding region. The size and location of these air-holes provide a high degree of design flexibility, which has been used to tailor the optical properties and design large-mode area fibers, dispersion managed fibers, and tailored fibers [4]. Recently, PCFs with very low loss have been reported [5], which further strengthened the possibility of using PCFs for long-haul transmission. Another important parameter for long-haul transmission is Polarization-Mode Dispersion (PMD). PMD causes different polarizations to propagate with different velocities, which causes pulse broadening in a communication system [6]. PMD can be classified into first- and second-order PMD, where first-order PMD describes the Differential Group Delay (DGD) between the two orthogonal Principal States of Polarization (PSPs) [7] and second-order PMD describes the wavelength dependence of the PSPs and the DGD, generally referred to as the rotation rate of the PSPs (2k) and the Polarity-Dependent Chromatic Dispersion (PCD) [8]. A non-zero second-order PMD is caused by polarization mode-coupling and increases linearly with the fiber length, where first-order PMD increases with the square root of the fiber length [9]. Second-order PMD needs to be considered, since it decreases the effectiveness of PMD compensators [10], but it also decreases the system outage probability in certain cases [11].

The first experimental measurements of first-order PMD in PCF1 was reported in [12], where the DGD was measured on three 10-meter silica PCF1s with different core sizes. In this paper, we report the first experimental measurements of second-order PMD in two 500-meter multi-polar PMD fibers, pulled under different conditions.

Experiment

The two studied PCFs had a triangular air-hole structure, with normalized air-hole size of $d_1 = d_2 = 0.43$. The background material was fluorine-doped silica, which lowered the refractive index of both, the core and cladding material with $d_1 = 1.43 + 10^{-3}$ with respect to pure silica. Two 900 meters fibers, referred to as PCF1 and PCF2, were drawn from the same preform but under different pulling conditions. These fibers were coiled on two 160mm diameter spools and spliced at both ends with a 1-meter pigtail with FC/PC connectors. A microscope picture of the two fibers at the beginning of each pull is shown on Figure 1, and it shows an increased air-hole size of PCF2, compared to PCF1. The air-hole size of PCF1 and PCF2 was 1.46um and 1.52um, respectively. The eccentricity of the cores was quantified using the formula: $e = d_{min}/d_{max}$, where e is the eccentricity and d_{min} and d_{max} is the minimum and maximum distances between two diagonal air-holes surrounding the core. The eccentricity of the cores of PCF1 and PCF2 were 0.014 and 0.017, respectively, indicating a slightly more eccentric core in PCF2 than in PCF1.

The Jones matrix of each fiber was measured from 1530nm to 1560nm with 0.25nm stepsize for PCF1 and 0.1nm stepsize for PCF2. The DGD and the PCD was calculated using the Jones Matrix Eigenanalysis [13], and the two second-order parameters, the PCD and the rotation rate of the PSPs (2k), was calculated from the wavelength derivative of the DGD and the PSP vector, respectively.

Results and Discussion

The measured first- and second-order PMD parameters for PCF1 and PCF2 are shown on Figure 2 and Figure 3, respectively. Due to the noisy DGD curve, the DGD data was lowpass filtered using a 10th order Hamming window before the PCD was calculated. Since the noise only occurred on the DGD data, the noise was attributed to wavelength inaccuracy of the laser used in the experiment. As seen from the top curves of Figure 2 and Figure 3, there is a strong correlation between the PSP rotation rate (2k) and the DGD, which has also been observed in standard single-mode fibers [10].

Figure 1. Microscope picture of the end facet of the two fiber samples.

The Jones matrix of each fiber was measured from 1530nm to 1560nm with 0.25nm stepsize for PCF1 and 0.1nm stepsize for PCF2. The DGD and the PCD was calculated using the Jones Matrix Eigenanalysis [14], and the two second-order parameters, the PCD and the rotation rate of the PSPs (2k), was calculated from the wavelength derivative of the DGD and the PSP vector, respectively.

Figure 2. DGD, PCD and 2k measured on PCF1.

Figure 3. DGD, PCD and 2k measured on PCF2.

Figure 4 and Figure 5 shows the measured Probability Distribution Function (PDF) of the DGD of PCF1 and PCF2, respectively. The dashed line indicates the Maxwell distribution for the theoretical DGD in the strong mode-coupling regime. The PMD of PCF1 and PCF2 was measured to 2.3ps and 7.1ps, respectively. The PMD was also measured using the interferometric method and yielded a PMD of 2.1ps and 6ps, respectively. These values were measured using an 80nm broadband LED centered around 1550nm. These values are comparable to standard single-mode fiber values reported in the mid-1990's [15]. It should also be mentioned that the PMD at 1530nm was measured to 0.9ps and 2.2ps, respectively, and thereby indicating strong wavelength dependence of the PMD. The PDF of the DGD clearly indicates that PCF2 is closer to the strong mode-coupling regime than PCF1, even though PCF2 has 3 times higher PMD than PCF1. This indicates that the birefringence is increased and the mode-coupling length is decreased in PCF2 compared to PCF1.
Figure 5. Probability Distribution Function of the DGD measured on PCF2.

Conclusion
We have successfully measured first- and second-order PMD on two successive pulls of a triangular structured PCF. The two PCFs were pulled under different conditions, which affected both the birefringence and the mode-coupling length. The experiment showed that the PMD of these fibers behaved in the same way as in standard fibers and could be treated using conventional methods. The reported PMD was comparable to the PMD reported in the mid-1990s for standard fibers.

References
4. M. D. Dybendaal, ECOC 2002, Tu3.4.2.
6. L. Farr et al., ECOC 2002, PD1.3.

Advanced Amplifier Design: Physics and Systems Limitations
K. Wundke, Corning Incorporated, Corning, NY.
Email: wundkek@corning.com

We discuss the design requirements of transient-gain controlled Erbium-doped fiber amplifiers for next generation photonic networks, possible design implementation and trade-offs.

1. Introduction
In today’s modern photonic networks optical amplifiers are used as line amplifiers between fiber spans, as pre- and booster amplifiers as loss compensators in OADM nodes, and as power equalizers, to name only some of the possible applications. Each application drives a different set of design requirements in terms of performance, i.e., optical, electrical, and thermal; size, and cost. Efforts to date, much of the development effort was geared towards meeting specific performance goals with a minimum impact on cost and size. This approach was mainly driven by the fact that most amplifiers were to be used in static, point-to-point-long-haul and ultra-long-haul transmission systems. Important design parameters for amplifiers used in such systems are OSNR, launch power, bandwidth, wideband gain flatness, gain tilt control and midstage access, where the latter is used to maximize performance. The approach was mainly driven by the fact that most amplifiers were to be used in static, point-to-point-long-haul and ultra-long-haul transmission systems.

2. Next generation EDFA requirements
Reconfiguration and pay-as-you-grow upgrading of a network could cause an amplifier that today sees only a single channel to be used for as many as 100 and more channels in the future. This wide range of number of channel count together with the wide variation in fiber span lengths and the use of high, dynamic loss components yields input power ranges of up to 40 dB as well as gain variability of at least 15 dB. Additionally, ultra-fast and accurate transient control (6) becomes extremely important as networks migrate to reconfigurability it prevents large surviving-channel gain excursions during channel add and drop events. A potential decrease in the surviving-channel gain during such a transient event causes performance degradation due to eye-closure and OSNR degradation at the receiver side, whereas an increase in the surviving-channel gain can build up throughout the network and potentially damage other line components and receivers [7].

3. Next generation EDFA design considerations
In contrast to the next generation EDFA amplifier requirements, conventional EDFA amplifiers have limited dynamic operating range and limited reconfiguration capability. Therefore, system engineers have had to place variable optical attenuators (VOA’s) in front and after the amplifier, as shown on the left hand side in Fig. 1, to buffer the increased variability. This causes severe OSNR and optical power penalties as well as significantly lower wall-plug efficiencies, increased size and added cost. Also, system vendors had to merge the VOA and the amplifier controls together on a higher level, further increasing complexity and cost and reduces overall performance.

Recently emerging controlled amplifier designs, as shown in Fig. 1, as well, partially circumvent that problem by providing a much wider dynamic gain and power range. Fig.2 shows the Noise Figure benefit of such a variable gain amplifier [8] as a function of optical gain compared to a conventional fixed gain amplifier. However, these designs still require to place two amplifiers back-to-back to compensate for high loss components. Additionally, the performance optimization that balances the two amplifiers and the midstage loss must be implemented at a higher system level, which intrinsically limits the overall performance. Furthermore, for the transient controller to operate more effectively, its performance parameters must match the requirements dictated by the latest generation of high-speed optical switches, which are able to initiate adds and drops with rise- and fall-times of as little as 1 us and power changes of at least 15 dB. Moreover, power spikes due to techni-