A novel optical labeling scheme using a FSK modulated DFB laser integrated with an EA modulator

Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva; Peucheret, Christophe; Jeppesen, Palle

Published in:
Technical Digest Optical Fiber Communication Conference 2003

Publication date:
2003

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
A Novel Optical Labeling Scheme Using a FSK Modulated DFB Laser Integrated with an EA Modulator

J. Zhang, N. Chi, P. Holm-Nielsen, C. Peucheret, P. Jeppesen, Research Center COM, Technical University of Denmark, Kgs. Lyngby, Denmark.
Email: jz@com.dtu.dk.

The feasibility of an optical FSK labeling scheme is demonstrated. An optical signal consisting of a 10Gb/s payload and a 312Mb/s label was generated, and its performance was evaluated in an 88km transmission link.

1. Introduction

All optical label switching implements the packet routing and forwarding functions of multiprotocol label switching (MPLS) directly in the optical layer. It is a promising technology for next-generation wavelength division multiplexing (WDM) networks. Several optical labeling methods have been proposed and demonstrated as possible solutions [1], in which the label information is attached to the intensity-modulated payload [2]. In direct detection, the label information is modulated using either the differential-phase-shift-keying (DPSK) or frequency-shift-keying (FSK) format. The feasibility of the optical FSK label has been experimentally validated [3]. However, this scheme imposes stringent requirements on the laser linewidth. The scheme of combined FSKASK modulation was demonstrated to be more applicable in practical networks [4]. In this paper, we report the construction of a novel optical FSK transmitter and investigation of the optical FSK labeled signal's performance. The generated signal consists of a 10Gb/s intensity modulated payload and a 312Mb/s FSK format label, whose performance was evaluated in an 88km standard single-mode-fiber (SMF) transmission link.

2. Operation Principle of the Optical FSK Transmitter

The optical FSK transmitter plays an important role in optical labeling. The label information is impressed upon the frequency of the optical carrier through FSK modulation, while keeping its amplitude unaffected. Thus the optically labeled packet can be achieved when the payload information is modulated on the amplitude of the carrier. An optical FSK signal can be generated simply by direct modulation of the electrical carrier of DFB or DBR laser diodes [5]. However, the drive current variation also results in a simultaneous intensity modulation of the emitted light. As for the optical labeling, such residual intensity modulation has a detrimental effect on the optical payload. A method to payload information is added. To overcome this problem, we propose a novel optical FSK label generation scheme based on a commercially available integrated DFB laser.

3. Performance of the Optical FSK Labeled Signal

To investigate the performance of the optical FSK labeling scheme, an 88km SMF transmission link was set up, as shown in Fig. 4. The optically labeled signal consisting of a 10Gb/s payload and a 312Mb/s label was first generated, then transmitted over 88km SMF, and finally detected using direct detection receivers.

Two pseudo-random pattern generators were used to generate the payload and label information. The label information was impressed upon the optical carrier (1550.0 nm) through FSK modulation, while the payload information was added by using a 10Gb/s Mach-Zehnder intensity modulator (MZM). The power of the labeled signal was amplified to 10dBm and input into the fiber. The transmission span consisted of 88km SMF and a matching length of dispersion compensating fiber (DCF). The DCF was inserted into the link based on a hybrid dispersion compensation map (i.e., split before and after the transmission fiber) to give optimized transmission performance. At the receiver node, the labeled signal was split using a 3dB optical coupler. One arm was directly detected by a photodiode and the other was converted into the electrical domain. In the other arm, a fiber-Bragg-grating (FBG) was used to filter only a single lobe of the FSK labeled.
signal; thus achieving the FSK demodulation. The demodulated label was received by an electrical receiver with 1.8 GHz bandwidth. Fig. 5 shows the eye-diagrams of the payload and label.

Fig. 6 (a) Payload and label receiver sensitivity versus extinction ratio of the payload

4. Conclusions
We have proposed a novel optical FSK label generation scheme based on a commercially available integrated DFB laser/EA modulator. An optically labeled signal consisting of a 10Gb/s payload and a 312Mb/s label was generated. Both payload and label data could be recovered error free after transmission over 88km SMF, validating the feasibility of the optical FSK labeling scheme.

Fig. 6 (b) BER performance of the optically labeled signal

Fig. 6 (c) BER performance of the optically labeled signal

Fig. 7 (a) Payload and label receiver sensitivity versus extinction ratio of the payload

Fig. 7 (b) BER performance of the optically labeled signal

Fig. 7 (c) BER performance of the optically labeled signal

Fig. 8 (a) Payload and label receiver sensitivity versus extinction ratio of the payload

Fig. 8 (b) BER performance of the optically labeled signal

Fig. 8 (c) BER performance of the optically labeled signal

References

TuR 4:30 PM - 6:00 PM
Murphy 1
Access Networks I
Gordon Wilson, Onsetica Inc., USA, Presider

Whatever Happened to Fiber-to-the-Home?
N. Frigo, K. Reichmann, P. Ianone, AT&T Labs, Middletown, NJ; Email: frigo@att.com.

The early vision of FTTH, which promised abundant, ubiquitous, and future-proof bandwidth to consumers, has been largely unrealized. We discuss the historical, competitive, economic, and service reasons for this and prospects for the future.

Introduction
The vision of Fiber-to-the-Home (FTTH) was developed in the 1980s to satisfy the perceived need for future consumer applications. Optical fiber, it was felt, would permit high bandwidth transport, remove “bottlenecks” as video-rich services were developed, enable upgrades, and permit passive multiplexing that would remove remote powering costs. Various aspects of its history have been reviewed [1-3]. In today’s terms, applications such as telephony and video-on-demand were to be carried over a B-ISDN universal carrier at OC-3 rates [1]. Proposals included an optical version of the telephony loop (each fiber carrying one house’s circuit) to passive optical networks (PONs) with an optical splitter delivering light (and bandwidth) to several optical network units (ONUs). For Fiber-to-the-Curb (FTTC), the ONUs served several homes. In the early 2000s, since the FTTH vision was established, economic, regulatory, and technological forces have frustrated the vision’s intended universal implementation.

The Recent Past
Fig. 1 shows some of the structural forces at work. The two major consumer applications today are broadcast television and telephony, which have nearly opposite characteristics. TV is a passive impersonal entertainment delivered as a one-way service even at high bandwidth. Telephony is personal communications that requires a two-way symmetric, low-bandwidth connection. We apparently value communication more than “content” [1] because we pay per different information on phone calls exceeds that of entertainment by 6 or 7 orders of magnitude. TV’s infrastructure is largely coaxial cable, Multiple System Operators (MSOs) as service providers, while telephony is largely delivered over twisted wire pairs (or Inbome Local Exchange Carriers (ILECs). The two-way nature and quality of telephony makes aggregation, multiplexing, and switching essential, and thus the telephone and TV physical networks look quite different. Both the MSOs and the ILECs have, over time, created efficient networks, and they can be viewed as vertically integrated, or own the networks that deliver their services. Both entities saw potential markets in the intermediate area of Fig. 1, labeled “Data,” which could provide personalized entertainment, be consumed as an end in itself, or enhance communications services. This seemed a natural extension for the ILECs, since these services required point-to-point connections, while regulatory and technical reasons prevented MSOS from entering. This space was intended for FTTH-the services would need more bandwidth than the copper plant allowed, and would need a new architecture, but revenues from new services such as Video on Demand (VOD) were expected to support a fiber build-out [1].

Developments in the 1990s, however, changed the landscape dramatically. Advances in linear lightwave technology enabled CATV with cascaded amplifiers to be replaced with high bandwidth, high fidelity optical analog transmission links to local nodes. The “pushing fiber deeper” approach became known as Hybrid Fiber-Coax (HFC), which, with its ability to shrink serving areas sizes [1], began to look like the telco’s FTTH/NGP, would permit the MSOs to carry data (albeit on a shared medium). This would crowd into the telco’s vision and could lead to competition in that new space. Meanwhile, technical advances in data compression reduced the information needed to carry video and voice, thereby reducing network cost and complexity.

However, new moderns with a variety of Digital Subscriber Loop (xDSL) formats were developed to carry data and video over copper pairs. Fiber optics, in turn, graphical interfaces made worldwide web traffic explode (making that central area in Fig. 1 look more attractive), launched the dot-com boom and the technological experience. What was and had been seen as cost-effective increased the service prospect for FTTH: the services would need more bandwidth than the copper plant allowed, and would need a new architecture, but revenues from new services such as Video on Demand (VOD) were expected to support a fiber build-out [1].

Developments in the 1990s, however, changed the landscape dramatically. Advances in linear lightwave technology enabled CATV with cascaded amplifiers to be replaced with high bandwidth, high fidelity optical analog transmission links to local nodes. The “pushing fiber deeper” approach became known as “Hybrid Fiber-Coax” (HFC), which, with its ability to shrink serving areas sizes [1], began to look like the telco’s FTTH/NGP, would permit the MSOs to carry data (albeit on a shared medium). This would crowd into the telco’s vision and could lead to competition in that new space. Meanwhile, technical advances in data compression reduced the information needed to carry video and voice, thereby reducing network cost and complexity.

However, these advances now make multiple services possible, which have recently begun, further changing the competitive landscape. Technical advances in data compression reduced the information needed to carry video and voice, thereby reducing network cost and complexity.

Meanwhile, technical advances in data compression reduced the information needed to carry video and voice, thereby reducing network cost and complexity.

Meanwhile, technical advances in data compression reduced the information needed to carry video and voice, thereby reducing network cost and complexity.

Meanwhile, technical advances in data compression reduced the information needed to carry video and voice, thereby reducing network cost and complexity.

Meanwhile, technical advances in data compression reduced the information needed to carry video and voice, thereby reducing network cost and complexity.

Meanwhile, technical advances in data compression reduced the information needed to carry video and voice, thereby reducing network cost and complexity.

Prospects for the Future
Overriding all the plans, of course, is the need for the network to make money for its owner: early advocates estimated that the customer’s willingness to pay for phone and VOD services would support a cost of $1500 per subscriber for infrastructure [1], which is still a reasonable guess today. Much activity in 60% and standards groups such as the Full Service Access Network (FSAN) in the First Mile (EFM) activities support the vision, and vendor are are within striking range of these costs. Furthermore, there are several large trials run by ILECs (dating back to the 1980’s), and some MSO trials have recently been begun, so the players are developing technological experimental projects for a massive FTTH roll-out [1]. We believe that a major deployment is unlikely for the foreseeable future for several reasons:

First, the cost calculations require essentially monopoly conditions. The major cost of the FTTH network is in the installation of ubiquitous distribution fiber that permits a drop to any potential customer. This fixed cost of passing every customer must be borne by that fraction of customers who actually subscribe to it. In a competitive market is 25%, for example, then the effective cost per customer is nearly 4 times the