Analysis of bit-stuffing codes and lower bounds on capacity for 2-D constrained arrays using quasistationary measures

Forchammer, Søren

Published in:

Link to article, DOI:
10.1109/ISIT.2004.1365199

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Analysis of Bit-Stuffing Codes and Lower Bounds on Capacity for 2-D Constrained Arrays using Quasi-Stationary Measures

Søren Forchhammer
Research Center COM, 345v
Technical University of Denmark
DK-2800 Lyngby, Denmark
e-mail: sf@com.dtu.dk

Abstract — A method for designing quasi-stationary probability measures for two-dimensional (2-D) constraints is presented. This method is derived from a modified bit-stuffing coding scheme and it gives the capacity of the coding scheme. This provides a constructive lower bound on the capacity of the 2-D constraint. The main examples are checkerboard codes with binary elements. The capacity for one instance of the modified bit-stuffing for the 2-D run-length-limited RLL(2,∞) constraint is calculated to be 0.4414 bits/symbol. For the constraint given by a minimum (1-norm) distance of 3 between 1s a code with capacity 0.3497 bits/symbol is given.

I. INTRODUCTION
We present a method for designing two-dimensional (2-D) constrained codes based on bit-stuffing. We consider 2-D arrays with elements taken from a finite alphabet. The constraint is specified by the set of admissible configurations on an N by M rectangle. For 2-D RLL(1,∞), bit-stuffing provides efficient coding [1]. In [2] bit-stuffing for 2-D RLL(d,∞), d ≥ 2 were considered. We shall take a slightly different approach to bit-stuffing in order to facilitate analysis e.g. providing a constructive lower bound on the capacity of the constraint. The method is generally applicable to checkerboard constraints, where a 1 must be surrounded be a certain pattern of 0s, meaning that a 0 is always admissible.

II. QUASI-STATIONARY MEASURES
A quasi stationary measure may be introduced by concatenating arrays. Given a constraint, let \(W \) denote a stochastic variable defined on an \(n \) by \(m \) array, which may take on any configuration admissible by the constraint. Let \(X \) and \(Z \) denote variables representing the first and last \(M - 1 \) columns (with \(n \) elements). Let \(Y \) denote a variable representing the middle \(m - 2M + 2 \) columns. We assume that the measures on the boundaries, \(X \) and \(Z \) are identical for the measures, \(W \) to be considered. Thus, starting with \(X_0 Y_0 Z_0 \), arrays \(Y, Z \) may repeatedly be added to form \(X_0 Y_0 Z_0(X, Y, Z)\) \(\mathbb{Z}^\infty \), such that \(Z_{i-1}, Y_i, Z_i \) has the same measure as \(W \). The entropy (per symbol) is given by the conditional entropy of \(Y, Z_i \) given \(Z_{i-1}, \) which is

\[
H_W(m) - H_X(M-1) - H_X(M-1) = \frac{H_W(m)}{m - M + 1}
\]

where \(H_W(m) \) is the entropy of \(W \) (per row) and \(H_X(M-1) \) is the entropy of \(X \) (per row). A simple way to specify \(W \) in (1) is to assign probabilities to the bit-stuffing scheme below. The boundaries \(X \) and \(Z \) are specified by identical but independent bit-stuffing schemes. The middle columns \(Y \) are specified by bit-stuffing conditional on the boundaries \(X \) and \(Z \).

III. NUMERICAL RESULTS
Two examples with binary elements and constraint size \(N = M = 3 \) are considered. For the RLL(2,∞) constraint, analysis of the modified bit-stuffing was carried out calculating capacities, \(C \) for \(m = 12 \). The transition probabilities for a new row of \(W \) were determined by the products of (conditional) probabilities adding and bit-stuffing the elements of the new line of \(X \) and \(Z \) before \(Y \) and using the same conditional probabilities for the corresponding elements of \(X \) and \(Z \). Thus the prerequisites for (1) is satisfied. Let \(p_1 \) denote the probabilities of writing a 1 when this is admissible. Simple bit-stuffing writing an unbiased sequence with \(p_1 = 1/2 \) gave \(C = 0.388 \). Using a single biased sequence gave \(C = 0.437 \) for optimal choice of \(p_1 \). Finally the values of \(p_1 \) may be chosen independently for each column of \(X \) and \(Y \). The \(p_1 \) values of \(Z \) are given by \(X \). This gave a best value of \(C = 0.4419 \), also providing a lower bound for the constraint. This is a fair improvement on the lower bound of 0.4267 on the capacity of (diagonal) bit-stuffing in [2].

Capacities were also calculated for applying the modified bit-stuffing scheme to the constraint given by a min. (1-norm) distance of 3 between 1s. The results obtained for \(m = 15 \) were \(C = 0.276 \) when writing an unbiased sequence, \(C = 0.344 \) for a single biased sequence and \(C = 0.3477 \) choosing different biased sequences for each column of \(X \) and \(Y \). For this constraint the boundaries, \(Z_{i-1} \) and \(Z_i \) must be at least an additional row ahead in order to bit-stuff the elements of \(X \) and \(Z \) independently of past elements of \(Y \). A more elaborate scheme for specifying \(W \) in (1) was also devised. The probabilities \(p_1 \) were made dependent on the other elements on the \((N-1) = 2 \) previous rows. The next row of \(X \) (and \(Z \) is specified by probabilities conditioned on 3 rows of \(X \) and \(Z \) and 2 rows of \(Y \). These conditional probabilities were obtained from the maxentropic solution [3] for \(W \) (with two rows forming the states). This gave a capacity of \(C = 0.3497 \), which also provides a new lower bound for the constraint.

REFERENCES