Ordered Phases in Cu2NiZn: A First-Principles Monte Carlo Study

Simak, S.I.; Ruban, Andrei; Abrikosov, I.A.; Skriver, Hans Lomholt; Johansson, B.

Published in:
Physical Review Letters

Link to article, DOI:
10.1103/PhysRevLett.81.188

Publication date:
1998

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Ordered Phases in Cu$_2$NiZn: A First-Principles Monte Carlo Study

S. I. Simak,1 A. V. Ruban,2 I. A. Abrikosov,1 H. L. Skriver,2 and B. Johansson1

1Condensed Matter Theory Group, Physics Department, Uppsala University, S-75121 Uppsala, Sweden
2Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 4 September 1997)

Monte Carlo simulations based on effective interactions obtained from first-principles calculations reveal the existence of three ordered phases in ternary Cu$_2$NiZn: (i) “modified”-L$_{10}$ (0–600 K), (ii) L$_3$ (600–850 K), and (iii) L$_{10}$ (850–1200 K). This is in contrast to the generally accepted picture which assumes the existence of only two. We demonstrate that this sequence of phases is a consequence of the symmetry of the ground state and the magnitude of the dominating pair interactions. It agrees with available experimental data. [S0031-9007(98)06539-9]

PACS numbers: 71.15.Nc, 64.60.Cn, 71.20.Be

Many of the alloys used in technological applications are multicomponent systems and may exhibit a number of phase transitions [1] which may destroy their desirable physical properties. A detailed knowledge of possible phase transitions in specific metallic alloys is therefore of vital importance. In this respect the advent of powerful computers has led to a surge in first-principles calculations and subsequent modeling of phase transitions in binary alloys [2] but only to a few studies of ordering in multicomponent systems.

Ternary fcc-based Cu$_2$NiZn known as “German silver” or “Newsilver” is an alloy of technological interest, which according to the generally accepted interpretation of a large body of experimental investigations [3] undergoes two phase transitions with decreasing temperature: (i) at about 774 K from the disordered fcc solid solution to an L$_{12}$ structure and (ii) at about 600 K to a modified L$_{10}$ structure. Possibly at variance with this picture of only two phase transitions is the observation by Hashimoto et al. [4] of an unusually high value of the Ni-Zn short-range order (SRO) parameter in a Cu$_2$Ni$_{49}$Zn$_{24}$ sample quenched from 870 K, i.e., from above the first phase transition, indicating the existence of a so far undiscovered phase intermediate between the solid solution and the L$_{12}$ structure [5].

Recently Althoff et al. [6,7] performed a detailed first-principles study of the atomic short-range order in disordered Cu$_{50}$Ni$_{25}$Zn$_{25}$ and found that the disordered state became unstable relative to a (100)-type ordering at 985 K using the Onsager cavity-field correction. This temperature is about 200 K higher than the observed order-disorder transition temperature and the predicted high temperature ordered state is an unusual L$_{10}$-type structure [8] which is not seen experimentally. In the most recent work Althoff and Johnson [9] neglected the Onsager correction and did not find the L$_{10}$-type structure obtained in their previous study. In addition, the transition temperature became even higher, 1200 K. Clearly, further investigations, theoretical as well as experimental, are needed to resolve the question of the phase transitions and ordering in Cu$_2$NiZn.

In the present Letter we provide a description of the phase transitions in Cu$_2$NiZn formed on the basis of first-principles total energy calculations, Monte Carlo simulations, and an analysis in terms of the concentration wave formalism [10]. According to the latter a complete characterization of Cu$_2$NiZn must include four order parameters [11], and the alloy may exhibit as many three distinct ordering sequences leading from the random phase to the modified L$_{10}$ structure involving five differently ordered phases. Our calculations show that only one of the sequences may be found experimentally and, hence, we predict three different phases and three phase transitions in Cu$_2$NiZn in the temperature range below melting.

Our Monte Carlo simulations of ordering in Cu$_2$NiZn are based on effective cluster interactions (ECI) determined by first-principles total energy calculations, and we take advantage of the order-N locally self-consistent Green’s function technique, recently proposed by Abrikosov et al. [12,13]. This technique builds on Andersen’s linear methods [14,15] and allows us to treat a 144 atom supercell with different atomic configurations of Cu, Ni, and Zn at a fixed Cu$_{50}$Ni$_{25}$Zn$_{25}$ composition. The calculated equilibrium volume changes less than 0.3% during ordering and all calculations [16] are therefore performed at a fixed volume of 311.8 (bohr3/unit cell). Lattice relaxation effects are small [17] and neglected in the present calculations. The interactions obtained by the present procedure are concentration dependent in contrast to the standard Connolly-Williams treatment [18] in terms of concentration-independent interactions. As a result, there is a substantial reduction in computational efforts due to the reduction of the number of significant multisite interactions [19].

The calculated total energies of 32 suitably chosen alloy configurations are mapped onto a cluster expansion of the total energy of the configuration defined by the
probabilities $P_{j}^{\alpha \beta}$ to find pairs of atomic species α and β separated by j coordination shells

$$E = E_{\text{rand}} + \sum_{\alpha + \beta; j} D_j (c_{\alpha} c_{\beta} - P_{j}^{\alpha \beta}) V_{j}^{\alpha \beta}. \quad (1)$$

Here, E_{rand} is the total energy of the completely random alloy, $V_{j}^{\alpha \beta}$ the corresponding ECI, D_j the degeneracy factor, and c_{X} the concentration of element X in the alloy. A least-squares fit is used to extract 21 concentration- and volume-dependent ECI, corresponding to pair interactions up to the seventh coordination shell. The so determined cluster expansion reproduces the first-principles total energies with an average error of 0.014 mRy with the maximum error not exceeding 0.2 mRy. Subsequent tests for the structures not included in the fit show that the error of the expansion never exceeds 0.22 mRy, i.e., about 4% of the ordering energy.

The extracted ECIs are presented in Fig. 1 and we note that the nearest-neighbor interactions are large and positive indicating a tendency to order in pairs of atoms in the system. The magnitude of the pair ECI decreases from NiZn over CuZn to CuNi as expected from the values in the corresponding binary systems. In fact, it is this succession of pair interactions which determines the sequence of phase transitions in Cu$_2$NiZn predicted by the calculations to be presented.

The Monte Carlo simulations are performed for a cubic box containing 32,000 atoms on an fcc lattice using periodic boundary conditions. They include slow cooling with long simulated annealing at each particular temperature and further averaging of the thermodynamic values on the basis of 3000 Monte Carlo steps. The results are presented in Fig. 2 where we show the unit cells of the predicted stable crystal structures, the average occupation numbers of Cu, Ni, and Zn on the three inequivalent sublattices, and the values of the four order parameters as obtained in the temperature range 100–1500 K.

The variation of the calculated occupation numbers with temperature clearly exhibits three phase transitions in the range from the random alloy to the ground state. This corresponds to three ordered phases, two of which have been observed experimentally, i.e., the ground state modified L$_{10}$ structure and the partially ordered L$_{12}$ structure both with Zn atoms at the corners of the cubic unit cell, and a new high-temperature ordered phase between 850 and 1200 K in the form of the L$_{10}$ structure with alternating layers of (Ni, Cu) and (Zn, Cu). The sequence of structures predicted in Fig. 2 is not accidental but an unavoidable consequence of the symmetry of the ground state, the number of components in the system, and the succession of the effective pair interactions in the system [20].

The results of the simulations may easily be analyzed within concentration wave theory [10] and for this purpose we observe that the ordering in Cu$_2$NiZn is generated
by the (100) star which has three branches \(\mathbf{k}_1 = \frac{2\pi}{a}[100] \), \(\mathbf{k}_2 = \frac{2\pi}{a}[010] \), and \(\mathbf{k}_3 = \frac{2\pi}{a}[001] \) of the concentration wave of the alloy components. Here, \(a \) is the lattice parameter. Further, there are only two independent occupation numbers for each sublattice and since Zn and Ni show the largest tendency towards ordering we use the Gibbs averages of the occupation numbers for these two components at the atomic positions \(\mathbf{R} \) of the fcc underlying lattice to describe the concentration wave, i.e.,

\[
n_{\text{Zn}}(\mathbf{R}) = c_{\text{Zn}} + \frac{1}{4}(\eta_{1\text{Zn}}e^{i\mathbf{k}_1\cdot\mathbf{R}} + \eta_{1\text{Zn}}e^{-i\mathbf{k}_1\cdot\mathbf{R}} + \eta_{3\text{Zn}}e^{i\mathbf{k}_3\cdot\mathbf{R}} + \eta_{3\text{Zn}}e^{-i\mathbf{k}_3\cdot\mathbf{R}}),
\]

\[
n_{\text{Ni}}(\mathbf{R}) = c_{\text{Ni}} + \frac{1}{4}(\eta_{1\text{Ni}}e^{i\mathbf{k}_1\cdot\mathbf{R}} - \eta_{1\text{Ni}}e^{-i\mathbf{k}_1\cdot\mathbf{R}} + \eta_{3\text{Ni}}e^{i\mathbf{k}_3\cdot\mathbf{R}} - \eta_{3\text{Ni}}e^{-i\mathbf{k}_3\cdot\mathbf{R}}).
\]

In these expressions \(c_{\text{Zn}} \) and \(c_{\text{Ni}} \) are the concentrations of Zn and Ni in the alloy and \(\eta_{i\text{X}} \) the four independent long-range order parameters for different branches \(\mathbf{k}_i \) dictated by the symmetry of the ground state and uniquely defining all the possible long-range ordered states in the alloy. Further, \(\mathbf{k}_3 \) is the branch which separates the Cu atoms from Zn and Ni, and \(\mathbf{k}_1 \) and \(\mathbf{k}_2 \) are the branches which separate the Zn and Ni atoms.

We now discuss the evolution predicted by the simulations of the system from the disordered state above 1200 K where all \(\eta_{i\text{X}} = 0 \) and all atoms are randomly distributed between sublattices to the ground state where all \(\eta_{i\text{X}} = 1 \) and the atoms are completely ordered on the sublattices. The first phase transition occurs at about 1200 K when the Ni-Zn interactions become sufficiently strong to overcome the configurational entropy and establish long-range order. The transition takes place between the disordered solid solution and a partially ordered (Zn, Cu) (Ni, Cu) \(-L_1^0\) structure, where Ni and Zn atoms are ordered in the usual \(L_1^0 \) structure, while Cu atoms, which have weak interactions with Zn and Ni, distribute themselves almost equally between all the sublattices with a very weak preference for Ni sites (\(\eta_{1\text{Zn}} > -\eta_{3\text{Ni}} \)) due to stronger Cu-Zn interactions (see the middle panel of Fig. 2). For this structure we have in general \(\eta_{1\text{Zn}} = \eta_{1\text{Ni}} = 0 \) and \(0 < \eta_{3\text{Zn}}, -\eta_{3\text{Ni}} < 1 \).

The second phase transition occurs at approximately 850 K and is caused by the Cu-Zn interactions intermediate in magnitude between the strong Ni-Zn and the weak Cu-Ni interactions. Since both the Ni-Zn and the Cu-Zn interactions participate in establishing long-range order and the Cu-Ni interactions do not, Zn occupies preferentially one sublattice while Cu and Ni are equally distributed between the remaining sublattices. This is the \((\text{Ni}, \text{Cu})_2\text{Zn}-L_1^2\) structure, where the LRO parameters obey the following rules: \(0 < \eta_{1\text{Zn}} = \eta_{3\text{Zn}} < 1 \) and \(0 < \eta_{1\text{Ni}} = -\eta_{3\text{Ni}} < 1 \). Further, since the Ni-Zn interaction is the strongest in \(\text{Cu}_2\text{NiZn} \) there are practically no Ni atoms on the sublattice which is preferentially occupied by Zn atoms and therefore \(\eta_{1\text{Ni}} = -\eta_{3\text{Ni}} \approx \frac{1}{3} \). Note that this transition results in an increase in lattice symmetry from tetragonal \(L_1^0 \) to cubic \(L_1^2 \) as the temperature decreases. This is most unusual for transformations involving comparable ordered phases [1].

At about 600 K the system undergoes the third phase transition to the modified \(L_1^0 \) ordered structure where each of the three inequivalent sublattices is occupied by either Zn, Ni, or Cu atoms. Here, the important factor is the ordering tendency between Cu and Ni atoms. It is easy to show that if there were a tendency towards segregation as in the binary Cu-Ni system then the Monte Carlo simulations would not have the modified \(L_1^0 \) structure as the ground state. In other words, the weak but attractive Cu-Ni interaction in \(\text{Cu}_2\text{NiZn} \) stabilizes the modified \(L_1^0 \) structure.

In the comparison of our results with the experimental data we find very good agreement in regard to the temperatures of the second and third phase transitions and support for the identification of the ordered phase between 600 and 774 K as the \(L_1^0 \) ordered structure. The existence of the high temperature \(L_1^0 \) structure, i.e., the phase below the first phase transition, as predicted by the present Monte Carlo simulations, is seemingly in contradiction to the conclusion drawn from the experimental investigations that \(\text{Cu}_2\text{NiZn} \) should be a disordered alloy in this temperature range and thus only exhibit two phase transitions. However, closer inspection of the available experimental data reveals that there is no solid basis for this conclusion.

The only reliable experimental data concerning the configurational states above the second phase transition is the determination of the short-range order parameters by Hashimoto et al. [4] based on measurements of the anomalous scattering of synchrotron radiation on a sample quenched from 870 K. As has already been noticed by Althoff et al. [7] the values for the SRO parameters obtained in Ref. [4] in fact suggest long-range order in the system. To address this question we have calculated the Fourier transforms of the Warren-Cowley SRO parameters related to the measured partial intensities and we find that the overall ratios of the peak heights of Ni-Zn, Cu-Zn, and Cu-Ni SRO at \(k = \frac{2\pi}{a}[100] \) obtained by Hashimoto et al. are very close to those we obtain for the \(L_1^0 \) ordered state in the temperature range 800–850 K. Thus, the experimental study of the high-temperature region appears to be incomplete and further careful investigations would be of great interest.

In summary, we have performed Monte Carlo simulations of the ordering in \(\text{Cu}_2\text{NiZn} \) and combined this with an analysis based on the concentration wave formalism. We find that the previously proposed identification of the two low temperature phases as “modified” \(L_1^0 \) and \(L_1^2 \) are consistent with our results. We further predict the existence of a new ordered state, namely, a partially ordered (Zn, Cu) (Ni, Cu)-\(L_1^0 \) phase, and show that the states found in the Monte Carlo simulations and the
sequence in which they order are direct consequences of the relative magnitudes of the interactions between the alloy components. The ordering tendency between Cu and Ni atoms is found to be a necessary factor in stabilizing the observed ground state in Cu$_2$NiZn.

The Swedish Materials Consortium No. 9 and NFR Grant No. 9871-321 are acknowledged. Center for Atomic-scale Materials Physics is sponsored by the Danish National Research Foundation.

[5] Hashimoto et al. pointed out in Ref. [4] that their measurements were probably performed in a two-phase region, L$_{12}$ + disordered state.
[8] The structure is described in Ref. [7] as an L$_{10}$-type structure where Zn and Ni atoms occupy their sublattices as in the modified L$_{10}$ ground state, while Cu atoms are distributed randomly between all the sublattices. Unfortunately, this result is based on an incomplete analysis. In the high temperature ordered phase there can be ordering between only two of the three alloy components and the structure must therefore be either the L$_{12}$ or L$_{10}$ structure.
[11] The number of inequivalent sublattices in the completely ordered state $P = 3$, the number of components in the alloy $S = 3$, and therefore the number of independent long-range order parameters are given by $(P - 1)(S - 1) = 4$. See A. G. Khachaturyan, Theory of Phase Transformations and Structure of Solid Solutions (Nauka, Moscow, 1974).
[16] The total energy calculations were performed in the local density, frozen-core, and atomic sphere approximations with the Vosko-Wilk-Nusair parametrization of the exchange and correlation potentials [S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980)] (of type Cu$_3$(NiZn)). The basis functions were expanded up to $l_{\text{max}} = 2$ in the framework of the linear muffin-tin orbital method with the exact potential function. The sampling of the irreducible wedge of the Brillouin zone was performed on a uniform grid and convergence tests were performed.
[17] This is discussed, for instance, in Ref. [4]. Note that Ni, Cu, and Zn are neighbors in the same row of the periodic table and accordingly the size mismatch between them is very small. It has further been shown theoretically [N. Papanikolaou, R. Zeller, P. H. Dederichs, and N. Stefanou, Phys. Rev. B 55, 4157 (1997)] that the contribution to the energetics of single impurities of Ni and Zn in Cu caused by local relaxations is practically negligible.
[19] We have estimated the interactions in Cu$_2$NiZn on the basis of the generalized perturbation method (GPM). This shows that already three-site interactions are very small and give a negligible contribution to the ordering energy of the ground state. At the same time concentration independent multisite interactions should be quite big in this system due to the strong concentration dependence of the pair interactions (see Ref. 7).
[20] Another succession of the effective pair interactions could result in other partially ordered phases L$_{12}$ [of type (Cu, Ni)$_3$(Zn, Ni)] and L$_{10}$ [of type Cu$_3$(NiZn)].