A 240W Monolithic Class-D Audio Amplifier Output Stage

Nyboe, Flemming; Kaya, Cetin; Risbo, Lars; Andreani, Pietro

Published in:

Link to article, DOI:
10.1109/ISSCC.2006.1696183

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
The audio amplifier market continuously demands improved performance at low cost. Apart from reliability, 3 performance criteria are of main interest: output power, idle loss and THD. Low THD should preferably be achieved open-loop, since a feedback loop cannot be easily added if the signal path is fully digital. For an integrated Class-D amplifier as shown in Fig. 19.1.1, all 3 performance criteria are influenced primarily by the timing and electrical characteristics of the gate drives, i.e., the circuits that drive the gates of the output switches. The input is a PWM audio signal, reproduced by the output stage at the nodes of the output switches. The input is a PWM audio signal on the loudspeaker terminal. The filter must be close to critically damped with a 4 to 8Ω load and provide maximum attenuation of the PWM carrier. This means that no degrees of freedom are left in its design, and I_{OUT} after C_{OUT} are considered fixed in the following. The influences of the gate drive output characteristics on each of the 3 main performance criteria are discussed below.

The V_{DS} voltage rating of the output LDMOS devices Q_0 and Q_1 (Fig. 19.1.2) sets a hard limit on the output power that can be delivered to a given load resistance. The supply voltage V_{DD} must be less than the device V_{DS} voltage rating by an amount large enough to account for the inevitable switching voltage overshoots. The size of the gate drive pull-down devices Q_2 and Q_4 influences the switching overshoots, and thus the achievable output power. For a rising-edge transition with a large output current I_{OUT}, the voltage at the output node V_{OUT} exceeds V_{DD} while the current builds up in the parasitic inductance L_{VDD} of the power-supply decoupling network. Neglecting all parasitic capacitances other than C_{GD} (which is acceptable for LDMOS transistors working in the saturation region), it can be shown that the peak drain-source voltage $V_{\text{DS}}(Q_0)$ for Q_0 can be approximated by

$$V_{\text{DS}}(Q_0) = V_{\text{DD}} + \sqrt{\left| I_{\text{OUT}} \cdot \frac{2 \cdot V_{\text{DS}}(Q_0)}{R_{\text{DS,Q0}}} \right|^2}$$

(1)

where C_{GD} is the gate-drain capacitance of Q_0 or Q_1 (considered identical), $V_{\text{DS}}(Q_0)$ is the gate-source voltage required by Q_0 to conduct I_{OUT} (neglecting the fraction of I_{OUT} flowing into $C_{\text{GD},Q0}$), and $R_{\text{DS,Q0}}$ is the channel resistance of Q_2. It is clear that the second term in (1) can be reduced by increasing $R_{\text{DS,Q0}}$, i.e., by reducing the width of the gate drive pull-down device Q_2. This allows the use of a higher V_{DD} without exceeding device ratings, which in turn increases the achievable output power. Symmetrical conditions result in the same dependence of $V_{\text{DS}}(Q_0)$ on the width of Q_4.

Another important performance parameter for Class-D amplifiers is idle power losses, which must be kept low, since the noise of a cooling air fan cannot be tolerated at low music volume. During idle operation, I_{OUT} equals the switching ripple current (see Fig. 19.1.3). For each rising-edge transition, I_{OUT} will charge the output node V_{OUT} towards V_{DD} right after Q_0 is turned off. This charging process is referred to as autocommutation, and is almost lossless, since charge is merely moved from $C_{\text{GD},Q1}$ to $C_{\text{GD},Q0}$. However, if the current in $C_{\text{GD},Q1}$ is large enough to cause a voltage drop across $Q2$ which exceeds the $Q0$ threshold voltage V_T, $Q0$ will conduct part of I_{OUT}, and the resulting power dissipation in $Q0$ will increase power losses. It can easily be shown that this loss is avoided if:

$$R_{\text{DS,}Q1} \leq \frac{16 \cdot V_T \cdot f_s \cdot L_{\text{OUT}}}{V_{\text{OUT}}}$$

(2)

(and similarly for $R_{\text{DS,}Q4}$ for the falling edge transition). This leads to an important design tradeoff for higher output power: Since a higher-power output stage must operate from a larger V_{DD} voltage, the widths of $Q2$ and $Q4$ must be increased to satisfy (2) and maintain low idle losses. However, this increases the overshoot voltages as given by (1). This effect is further accelerated by a larger I_{OUT}, and causes diminishing returns in terms of the output power achievable from higher voltage process nodes.

Low power losses also require avoiding any overlap between the conduction times for $Q0$ and $Q1$ during transitions. It has been shown that this sets an upper bound on the ratio $R_{\text{DS,Q1}}/R_{\text{DS,Q4}}$ (and similarly $R_{\text{DS,Q4}}/R_{\text{DS,Q1}}$) [1], as indicated in Fig. 19.1.3. This is not a major constraint, since it can be achieved simply by selecting a sufficiently small width for $Q3$ and $Q5$, a change that does not affect (1) or (2). Since the present design uses N-type devices for $Q3$ and $Q5$, these transistors operate in the saturated region when turning on $Q0$ and $Q1$, and the above requirement on the channel resistances should instead be applied to the ratios of the respective drive currents. Moreover, it can be shown that this ratio bound must be obeyed not only for the zero dead time approach presented in [1], but also to avoid conduction overlap in systems with finite dead time t_{DP}. The requirement causes the switch timing in the output stage to become asymmetrical, since $Q3$ and $Q1$ are now turned on more slowly than they are turned off. Given such an asymmetry, it can be shown that the minimum THD is obtained for a finite value of t_{DP}, contrary to the common assumption that THD always increases with dead time (e.g., see [2]).

Through careful optimization of the t_{DP} versus $Q3/Q4$ ratio, the open-loop THD performance shown in Fig. 19.1.4 has been obtained.

The amplifier was implemented in a 0.4µm/1.8µm P-bulk high-voltage BiCMOS process with 2 Al and 1 Cu metal layers. For each of the 2 half bridges, 3 pins are used for each of the terminals VDD, GND and OUT, and multiple bond wires connect each of these pins to the die, in order to ensure adequate current handling and reduce conduction power losses. The chip contains two half bridges, and when used in bridge tied load (BTL) configuration, the unclipped output power is 244W into 4Ω. To the best of our knowledge, this power level is unprecedented for monolithic output stages. While the output power is conventionally measured on a purely resistive load, a 4Ω loudspeaker is a complex load and requires additional current. To accommodate this need, the amplifier is designed to provide at least ±18A of output current during normal operation (see Fig. 19.1.5). Currents above this level will cause the output stage to automatically invert the PWM state, in order to limit the output current. This feature protects the device against an inadvertent short circuit at the output. During characterization, the speaker output terminals have been short circuited to ground and V_{DD} respectively. A total of 80,000 short circuit events have been applied over a -25 to +125°C temperature range without failure. A summary of the key performance measures is shown in Fig. 19.1.6, and a chip micrograph is shown in Fig. 19.1.7.

Acknowledgements:

The chip was designed by the Digital Audio design team at Texas Instruments, section manager Sreenath Umnikrishnan and design manager Dale J. Skelton, TI Fellow.

References:

Figure 19.1.1: Single-rail Class-D output stage (one half bridge shown).

Figure 19.1.2: Half bridge output stage detail.

Figure 19.1.3: Switching waveforms during idle operation.

Figure 19.1.4: THD+N measurement.

Figure 19.1.5: Output current capability.

Figure 19.1.6: Performance summary.

Output power

- 133W 8Ω, unclipped, Tc=75°C
- 176W 8Ω, 10% THD, Tc=75°C
- 244W 4Ω, unclipped, Tc=75°C
- 322W 4Ω, 10% THD, Tc=75°C

- VDD idle current 42mA
- VDD=50V, f_s=384kHz, L_OUT=10µH, Tc=25°C

- THD+N <0.07 % 8Ω
- <0.10 % 4Ω, see Figure 19.1.4

- Noise -110dBA
- Not limited by the output stage.
- -110dB (A-weighted) is achievable with a TI TAS5518 PWM modulator

Output current capability

± 18A

See Figure 19.1.5
Figure 19.1.7: Die micrograph. The two half bridges form one bridge tied output.
Figure 19.1.1: Single-rail Class-D output stage (one half bridge shown).

Monolithic Power stage

logic level PWM input

level shifter

non overlap control

Demodulation filter

V_{DD}

V_{OUT}

$Loudspeaker$

V_{SPK}

To other half bridge
Figure 19.1.2: Half bridge output stage detail.
Figure 19.1.3: Switching waveforms during idle operation.
Figure 19.1.4: THD+N measurement.
Figure 19.1.5: Output current capability.

1 period of 1kHz sine wave

11A_p needed for 244W @ 4Ω
<table>
<thead>
<tr>
<th>Output power $V_{DD}=50V$</th>
<th>133W</th>
<th>8Ω, unclipped, $T_c=75°C$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>176W</td>
<td>8Ω, 10% THD, $T_c=75°C$</td>
</tr>
<tr>
<td></td>
<td>244W</td>
<td>4Ω, unclipped, $T_c=75°C$</td>
</tr>
<tr>
<td></td>
<td>322W</td>
<td>4Ω, 10% THD, $T_c=75°C$</td>
</tr>
<tr>
<td>V_{DD} idle current</td>
<td>42mA</td>
<td>$V_{DD}=50V$, $f_s=384kHz$, $L_{OUT}=10\mu H$, $T_c=25°C$</td>
</tr>
<tr>
<td>THD+N</td>
<td><0.07 %</td>
<td>8Ω</td>
</tr>
<tr>
<td></td>
<td><0.10 %</td>
<td>4Ω, see Figure 19.1.4</td>
</tr>
<tr>
<td>Noise</td>
<td>-110dBA</td>
<td>Not limited by the output stage. -110dB (A-weighted) is achievable with a TI TAS5518 PWM modulator</td>
</tr>
<tr>
<td>Output current capability</td>
<td>± 18A</td>
<td>See Figure 19.1.5</td>
</tr>
</tbody>
</table>

Figure 19.1.6: Performance summary.
Figure 19.1.7: Die micrograph. The two half bridges form one bridge tied output.