Combined nanoimprint and photolithography of integrated polymer optics

Christiansen, Mads Brøkner; Schøler, Mikkel; Gersborg-Hansen, Morten; Kristensen, Anders

Published in:
Digest of the IEEE LEOS Summer Topical Meetings, 2007

Link to article, DOI:
10.1109/LEOSST.2007.4288352

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Combined nanoimprint and photolithography of integrated polymer optics

Mads Brøkner-Christiansen, Mikkel Schøler, Morten Gersborg-Hansen, and Anders Kristensen*

MIC – Department of Micro and Nanotechnology, Nano•DTU, Technical University of Denmark,
DTU building 345east, DK-2800 Kongens Lyngby, Denmark
*e-mail: ak@mic.dtu.dk www.mic.dtu.dk/NIL

We demonstrate wafer-scale fabrication by combined nanoimprint and photolithography (CNP) [1] of integrated polymer optics, combining active and passive polymer components with nm to mm features. Distributed feed-back (DFB) polymer dye lasers [2] are integrated with polymer waveguides [3]. The laser devices are defined in SU-8 resist, doped with Rhodamine 6G laser dye, shaped as planar slab waveguides on a Fused Silica buffer substrate, and with a 1st-order DFB surface corrugation forming the laser resonator, see Fig. 1. When optically pumped at 532 nm, lasing is obtained in the wavelength range 560 nm – 600 nm, determined by the grating period, see Fig. 3. Our results, where 20 laser devices are defined across a 10 cm diameter wafer substrate, demonstrate the feasibility of CNP for wafer-scale fabrication of advanced nano-structured active and passive polymer optical components.

Fig. 1 (a): Outline of the distributed feed-back (DFB) polymer dye laser device, formed as a slab waveguide on a borofloat glass substrate. Feedback is provided by Bragg grating surface corrugations of period \(\Lambda \sim 200 \) nm. (c) The chip layout. The laser is positioned 10 \(\mu \)m from a curved waveguide made of 4.2 \(\mu \)m thick undoped SU-8 polymer. 20 chips are defined across the 10 cm diameter wafer substrate.

In the CNP process, a combined UV mask and nanoimprint stamp, Fig 2 (a)-(b), is embossed into the resist, which is softened by heating, and UV exposed, Fig 2 (c)-(d). Hereby the mm to \(\mu \)m sized features are defined by the UV exposure through the metal mask, while nm-scale features are formed by mechanical deformation (nanoimprinting). The UV exposed (and imprinted) SU-8 is crosslinked by a post-exposure bake, before the stamp and substrate are separated, and the un-exposed resist is dissolved, Fig. 2 (e). Polymer waveguides are added [3] by an additional UV lithography step in a film of un-doped SU-8, which is spincoated on top of the lasers and substrate, Fig. 2 (f)-(g).

The combined UV mask and nanoimprint stamp is fabricated from a 10 cm diameter, 500 \(\mu \)m thick Quartz wafer. To define the sub-micron features (\(\Lambda \sim 200 \) nm period Bragg gratings), the Quartz wafer is spincoated with a 50 nm thick film of TEBN-1 electron beam lithography (EBL) resist, and a 20 nm aluminium film is deposited to avoid charging effects during the EBL exposure. Following the 100 kV EBL exposure, the charge compensating layer is removed in MF-322 and the TEBN-1 resist is developed in methyl isobutyl ketone (MIBK). A RIE process transfers the gratings 40 nm into the substrate. The UVL mask - 200 nm Cr
and 20 nm aluminium - is defined by UV lithography and lift-off. Before metal deposition, the un-masked areas are recess-etched by RIE (250 nm). Finally, an anti-stiction coating is deposited on the stamp. The Rhodamine 6G perchlorate doped SU-8 resist (13 wt% solid content SU-8 in cyclopentanone) is prepared as described in [3]. The final Rhodamine concentration is 3.2 µmol per g solid SU-8. The SU-8 is spincoated onto a borofloat glass substrate to a thickness of 450 nm. The combined UV mask and stamp is embossed into the unexposed SU-8 at 90°C and 2.5 bar before UV (i-line) exposure, and post-bake (2 min. 90°C). After separation the SU-8 is developed in PGMEA.

Fig. 2 Outline of the CNP fabrication process. (a)-(b): Combined UV mask and imprint stamp is used. (c)-(e): Embossing and UV exposure of dye doped resist to form DFB lasers. (f)-(g) Additional UV lithography step in undoped SU-8 film to define polymer waveguides.

Fig. 3 (a) AFM image of a fabricated DFB surface corrugation. The period is $\Lambda = 188$ nm, and the corrugation depth is $a = 60$ nm. (b) Emission spectra from four laser devices of different DFB grating period.

Fig. 3a shows an AFM image of a CNP fabricated surface corrugation, forming the Bragg gratings. The period is $\Lambda = 188$ nm. This grating is expected to yield 1st order Bragg reflection at a vacuum wavelength of 577 nm. In Fig. 3b we show the emission spectra from four lasers of different DFB grating period Λ.

References: