Flat-top pulse enabling 640 Gb/s OTDM demultiplexing

Oxenløwe, Leif Katsuo; Slavik, R.; Galili, Michael; Mulvad, Hans Christian Hansen; Park, Y.; Azana, J.; Jeppesen, Palle

Published in:

Link to article, DOI:
10.1109/CLEOE-IQEC.2007.4386428

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Flat-top pulse enabling 640 Gb/s OTDM demultiplexing

L.K. Oxenløwe1, R. Slavík2, M. Gališ2, H.C.H. Mulvač2, Y. Park2, J. Azaña2 and P. Jeppesen2
1. COM±DTU, Technical University of Denmark, Building 345V, DK-2800 Lyngby, Denmark, lo@com.dtu.dk
2. Institute of Photonics and Electronics, AS CR, Chaberská 57, 182 51 Prague, Czech Republic
3. Institut National de la Recherche Scientifique (INRS), Montréal, Québec H5A 1K6, Canada

In ultra-high speed optical time division multiplexed systems (OTDM) with bit rates of 640 Gb/s at single wavelength and single polarisation, timing jitter is perhaps the most detrimental factor, limiting switching quality [1]. Here, we report on using a novel flat-top pulse shaping technique, which increases the tolerance of a switch to timing jitter, enabling 640 to 10 Gb/s demultiplexing.

Figure 1 shows the experimental set-up. An OTDM transmitter with a pulse compressor based on highly non-linear fibre (HNLF) followed by standard single-mode fibre (SMF) emits 730 fs wide data pulses multiplexed from 10 Gb/s to bit rates of 320 or 640 Gb/s (2–1 PRBS). The data timing jitter is measured to be 230 fs.

The muxed data signal is sent to a non-linear optical loop mirror (NOLM) based demultiplexer with only 50 m HNLF. The NOLM is gated by a control pulse, which has been made a flat-top pulse through a specially tailored long-period fibre grating (LPG) [2]. The width of the flat-top pulse depends mostly on the input pulse width, which is a 500 fs soliton-compressed Gaussian-like shaped pulse. The control pulse timing jitter is measured to be 210 fs.

Figure 2 (right) shows the timing tolerance when switching the 730 fs data pulses using 320 Gb/s. With the original Gaussian control pulse, an only 150 fs tolerance is obtained. This is improved by more than a factor three to 500 fs or 640 Gb/s, and using the original Gaussian control pulse or the flat-top pulse. With the flat-top pulse, the performance is clearly improved with respect to the Gaussian case (320 G: 4 dB sensitivity improvement at BER 10⁻⁹, 640 G: 8 dB improvement at BER 3.9x10⁻¹⁰). The penalties are caused by slightly too wide data pulses (600 fs is ideal), some pulse pedestals and the timing jitter. At 640 Gb/s, it is only possible to get error-free performance with the flat-top pulse. Figure 2 (right) shows the timing tolerance when switching the 730 fs data pulses using 320 Gb/s. With the original Gaussian-like control pulse, an only 150 fs tolerance is obtained. This is improved by more than a factor three to 500 fs with the flat-top pulse, revealing the width of the flat part of the pulse.

In conclusion, we present the first ever use of flat-top pulses for 640 Gb/s switching, and we demonstrate a significant improvement of the tolerance to timing jitter, enabling error free 640 to 10 Gb/s demultiplexing.

References