Compression limits in cascaded quadratic soliton compression

Bache, Morten; Bang, Ole; Krolikowski, Wieslaw; Moses, Jeffrey; Wise, Frank W.

Published in:

Link to article, DOI:
10.1109/OECCACOFT.2008.4610499

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Compression limits in cascaded quadratic soliton compressors

Morten Bache, Ole Bang, Wieslaw Krolikowski, Jeff Moses, and Frank W. Wise

1DTU Fotonik, Dept. of Photonics Engineering, Technical University of Denmark, Bld. 343, DK-2800 Lyngby, Denmark
2Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia
3Optics and Quantum Electronics Group, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Dept. of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA

Abstract

Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.

Introduction

Soliton compressors are attractive because only a single nonlinear medium is needed to achieve many-fold pulse compression. In cascaded quadratic soliton compressors (CQSCs) soliton compression of high-energy fs pulses is possible, and few-cycle pulses can be reached in the near-infrared [1–6]. The cascaded quadratic nonlinearity is achieved by phase-mismatched second-harmonic generation (SHG), where the fundamental wave (FW) experiences a strong nonlinear phase shift from the generation (SHG), where the fundamental wave (FW) and SH dispersion. According to the nonlocal theory the GVM effects dominate for \(\Delta k < d_{12}^2/2k_2(2)\): this nonstationary regime is controlled by the oscillatory response function \(R_-\). For \(\Delta k > d_{12}^2/2k_2(2)\) the cascaded nonlinearities dominate: this stationary regime is controlled by the localized response function \(R_+\).

Weakly nonlocal limit

In the weakly nonlocal limit, where the nonlocal response is much faster than the response of \(U_1^2\), Eq. (1) can be approximated as [6]

\[
[i\partial_{\tau} - \frac{1}{2}\partial_{\tau\tau}] U_1 - N_{\text{eff}}^{(2)} U_1^2 |U_1|^2 = N_{\text{SHG}}^2 [i\sigma_{\text{R,SHG}} U_1^2 \partial_{\tau} U_1 + \frac{1}{2} s_b U_1^* \rho(\tau, U_1)],
\]

where \(s_b = 1\) \((s_b = -1)\) in the stationary (non-stationary) regime, and \(s_0 = \text{sgn}(d_{12}k_2(2))\). The LHS is an NLSE supporting solitons if the effective soliton order \(N_{\text{eff}} = (N_{\text{SHG}}^2 - N_{\text{Kerr}}^2)^{1/2}\) is above unity. \(N_{\text{eff}}\) also controls the compressor performance through the NLSE-like scaling laws [5]. The RHS gathering two detrimental terms: (1) A GVM-induced Raman-like perturbation with a characteristic dimensionless time \(\tau_{\text{R,SHG}} \equiv 2|d_{12}/\Delta k T_0|\), (2) A GVM-induced term \(U_1^* \rho(\tau, U_1)\) containing oscillatory components with periods dictated by \(\tau_0\) and \(\tau_{\text{SHG}}\), which explains the trailing oscillations often observed in the nonstationary regime, see Fig. 1(a) for \(\Delta k = 30 \text{ mm}^{-1}\), \(\rho(\tau, U_1)\) is caused by the oscillatory nature of \([R_-]\), so it appears only in the nonstationary regime. The RHS of Eq. (4) holds another insight: for a given \(\Delta k\), increasing \(N_{\text{SHG}}\) by increasing
the intensity does not necessarily lead to better compression because the Raman-like term, which causes strong pulse asymmetry and soliton splitting, scales as N_{SHG}^2. Similarly in the nonstationary regime, the detrimental oscillatory term $\rho(t, U_1)$ also scales as N_{SHG}^2.

Numerical results and discussion

Fig. 1 shows numerics all having the same soliton order $N_{\text{eff}} = 8$. Thus, the 200 fs input pulse should in all cases be compressed to 6.0 fs [5]. This is indeed observed in the stationary regime for $\Delta k = 50 \text{ mm}^{-1}$. For larger Δk, still in the stationary regime, Kerr XPM gradually degrades compression. For smaller Δk the transition to the nonstationary regime is approached ($\Delta k = 43 \text{ mm}^{-1}$), where pulse compression is limited by the nonlocal time scale $t_b = \tau_b T_0$. In the nonstationary regime ($\Delta k < 42$), pulse compression degrades due to increasing Raman-like effects ($\tau_{TR,\text{SHG}} \propto \Delta k^{-1}$), and to slow trailing oscillations (evident for $\Delta k = 30 \text{ mm}^{-1}$), caused by the GVM-induced oscillatory term ρ in Eq. (4). All simulations have a FW peak around 3 μm, which is a dispersive wave phase-matched to the FW soliton, causing the fast trailing oscillations for $\Delta k = 50, 43, 41 \text{ mm}^{-1}$; these prevent reaching single-cycle pulses for larger N_{eff}. In the nonstationary regime a distinct red-shifted peak appears in the SH spectrum at a frequency $\Omega_+ \text{+}$ determined by the nonlocal theory. In turn, close to the transition ($\Delta k = 41 \text{ mm}^{-1}$) the FW has a corresponding spectral hole at $\Omega_+ \text{-}$, while further away ($\Delta k = 30 \text{ mm}^{-1}$) it becomes a spectral peak. We show in Fig. 1(d) the red-shifted holes/peaks found numerically versus Δk, with an impressive agreement with the nonlocal theory.

Conclusions

In summary the compression limits in the nonstationary regime are the GVM-induced Raman-like effects and oscillatory components. In the stationary regime the GVM-induced Raman-like effects, nonlocal effects, competing cubic nonlinearities and XPM effects, and dispersive waves, which only exist when taking into account higher-order dispersion, all limit compression.

References

Fig. 1: Soliton compression with $N_{\text{eff}} = 8$ of a 200 fs FWHM $\lambda_1 = 1064 \text{ nm}$ pulse in a BBO crystal. (a) FW time plot, (b) the FW and (c) SH spectra at the optimal compression point. (d) The red-shifted spectral peaks in the nonstationary regime from numerics (symbols) and nonlocal theory (lines). The full coupled SHG equations are used, including self-steepening on all nonlinear terms and higher-order dispersion.