On exponential growth [of gas breakdown]

McAllister, Iain Wilson

Published in:
IEEE Transactions on Electrical Insulation

Link to article, DOI:
10.1109/14.85106

Publication date:
1991

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
On Exponential Growth

I. W. McAllister

Physics Laboratory II,
The Technical University of Denmark, Lyngby,
Denmark

At an early point in his career Pedersen published a paper on breakdown calculations [1]. The approach he employed led him to believe that he had unearthed the philosopher's stone. In later years, once he had appreciated fully the real nature of exponential growth, Pedersen considered this early work to be but a youthful folly.

Thereafter, he took pains to highlight both the exponential nature of discharge growth and the implications of such on discharge modeling in relation to breakdown calculations. In this way, he came to adopt an Occam's razor [2-5] approach to onset calculations. Occam's razor, which is a concept in philosophy, may be defined as the principle of simplest possible assumptions, and on this basis only the features of discharge growth essential to the problem at hand should be taken into account. For discharge onset calculations, such an approach leads one naturally to the streamer criterion [6].

Pedersen returned to the nature of exponential growth in his 1989 Whitehead Memorial Lecture, and to illustrate his point of view he produced several memorable overheads. As these were not incorporated in the published version of the Lecture [7], one of the overheads is presented here as a reminder of the particular care which he always exercised over the format of, and the information contained in, the slides/overheads employed at oral presentations.

The agreement obtained between measured breakdown voltages and predicted breakdown values is frequently used as a means of assessing the validity of the theory/model in question. However, owing to the mathematical nature of exponential growth, it is in fact far too easy to formulate a criterion which provides acceptable breakdown values, although the criterion may contain totally unrealistic features. The literature on breakdown calculations contains some striking examples of this characteristic.

Figure 1.
Unrestricted exponential growth in SF$_6$.

To highlight the insensitivity of breakdown voltages with respect to modeling, Pedersen produced Figure 1. In this Figure the variation of exp(αd) with field strength E is shown for SF$_6$ at 0.1 MPa, for a uniform field gap of length $d = 10$ mm. α is the effective coefficient of ionization. Figure 1 illustrates that an increase in E of only 7.6% results in an 80 orders of magnitude increase in the value of exp(αd).

The purpose of this rather facetious diagram is to underline that, as all onset criteria effectively embody such an exponential term, lack of agreement between theory and experiment should be virtually impossible. Never-
theless, if a critical assessment is not exercised on the resulting numerical data, absurd physical situations may easily arise. On the other hand, satisfactory numerical breakdown data would not necessarily imply either the indispensability or correctness of a sophisticated gas-physical process incorporated in the breakdown model, unless some novel detail was predicted or confirmed. To put things more succinctly, one could underline the numerical dangers involved with exponential growth through the following lighthearted remark: "SF₆ and the numbers racket".

REFERENCES

Manuscript was received on 14 March 1991