Comments on `The temperature dependence of homogeneous field breakdown in synthetic air' by W.S. Zaengl et al

McAllister, Iain Wilson

Published in:
IEEE Transactions on Electrical Insulation

Link to article, DOI:
10.1109/14.85108

Publication date:
1991

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Townsend was introduced by gas-discharge physicists [1, 2] who prefer to employ the gas number density N when referring to the energy related parameter E/N rather than E/p, where p is the gas pressure at temperature T, and E the electric field strength.

With reference to electrical insulation, it may be argued that, on grounds of its magnitude, the Townsend is an impractical unit. In addition, p and T remain the measured variables from which the corresponding N is deduced via the ideal gas law. If however, the gas in question is non-ideal, e.g. SF$_6$, the evaluation of N also requires a knowledge of the gas compressibility factor $Z(p, T)$, $Z \leq 1$. Values of Z can be derived if the relevant virial coefficients are known.

REFERENCES

I. W. McAllister