Energy-Aware Synthesis of Fault-Tolerant Schedules for Real-Time Distributed Embedded Systems

Poulsen, Kåre Harbo; Pop, Paul; Izosimov, Viacheslav

Published in:
Work-In-Progress Proceedings of 19th Euromicro Conference on Real-Time Systems

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Reliability-Aware Energy Optimisation for Fault-Tolerant Embedded MP-SoCs

Summary
- Design optimisation tool for distributed embedded real-time systems
- Decides mapping, fault-tolerance policy and fault-tolerant schedule
 - Hard real-time
 - Hard reliability goal
 - Static schedule for processes and messages
 - Fault-tolerance for k transient/soft faults
- Optimise for minimal energy consumption
- While considering impact of lowering voltages on the probability of faults
- Constraint logic programming (CLP) based implementation

Fault-tolerant scheduling
- More complex scheduling schemes yield more slack for energy management
 - Trade-off transparency for performance
 - Performance, and hence the obtainable energy savings are greatly increased
- More complex schemes demand larger schedule tables to be stored in the processing elements, and more sophisticated online schedulers

Reliable energy management
- System reliability is affected by use of energy management
 - The use of DVS increases the probability of faults, thus damaging the system reliability
- Reliability *must* be considered in the optimisation process
 - Considering reliability in the optimisation process allows for finding the minimum energy schedule that meets the reliability goal
 - Reliability is imposed as a constraint
- Reliability can be met at very little energy cost
 - Considering the reliability while optimising enables us to find reliable schedules with comparable energy savings

Comparison of FT schemes
- Fully Transparent Scheduling
 - Hard reliability goal, slack for energy management
 - Trade-off transparency for performance
 - Performance, and hence the obtainable energy savings are greatly increased
- Slack Sharing Scheduling
 - Reliability imposed as a constraint
 - Reliability can be met at very little energy cost
- Conditional Scheduling
 - Reliability imposed as a constraint
 - Reliability can be met at very little energy cost

Reliability-Aware Energy Optimisation (REO)
- Hard reliability goal, slack for energy management
- Trade-off transparency for performance
- Performance, and hence the obtainable energy savings are greatly increased

Energy vs. Faults
- Recent research shows that the probability of transient/soft faults increases dramatically when decreasing the voltage of a circuit
- Many modern designs use dynamic voltage scaling (DVS) to minimise energy consumption
- Fault-tolerant systems that use power management techniques may prove to be fault-tolerant but unreliable due to increase in faults
- Relation between faults and voltage is given by:
 \[\lambda = \lambda_0 e^{-\frac{V}{V_0}} \]

Reliable energy optimisation
- System reliability is affected by use of energy management
- The use of DVS increases the probability of faults, thus damaging the system reliability
- Reliability *must* be considered in the optimisation process
 - Considering reliability in the optimisation process allows for finding the minimum energy schedule that meets the reliability goal
 - Reliability is imposed as a constraint
- Reliability can be met at very little energy cost
 - Considering the reliability while optimising enables us to find reliable schedules with comparable energy savings

Comparison of energy savings
- Straightforward (SS)
 - R=0.999 999 987
 - 100% E
- Energy optimisation (EO)
 - R=0.999 999 878
 - 68% E
- Reliable energy optimisation (REO)
 - R=0.999 999 900
 - 73% E

Recent research shows that the probability of transient/soft faults increases dramatically when decreasing the voltage of a circuit. Many modern designs use dynamic voltage scaling (DVS) to minimise energy consumption. Fault-tolerant systems that use power management techniques may prove to be fault-tolerant but unreliable due to increase in faults. Relation between faults and voltage is given by:

\[\lambda = \lambda_0 e^{-\frac{V}{V_0}} \]