Integration of two-dimensional complex functions

Lessow, H.; Schjær-Jacobsen, Hans

Published in:
IEEE Transactions on Antennas and Propagation

Publication date:
1976

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
a horizontal antenna can be removed if it is situated at least
\(0.7/\sqrt{\varepsilon} \lambda\) away from the ground plane. For the worst case \(\phi(x,r) = 0\), it has been found that the reflection-coefficient method yields a solution within 10 percent of the exact Sommerfeld formulation both in the real and imaginary parts of impedance elements even when two horizontal currents are as much as 1000 \(\lambda\) apart. All of the above restrictions are valid even for low values of the dielectric constant of the ground plane \(\varepsilon \approx 2\). However, for parallel vertical wires over an imperfect ground plane the reflection coefficient method yields a result accurate to within 10 percent of the exact Sommerfeld formulation in all the real and imaginary parts of the impedance elements under all conditions of the ground as long as they are \(0.7/\sqrt{\varepsilon} \lambda\) away from the surface of the ground plane.

Input data required for this program include the conductivity and the dielectric constant of the ground, the operating frequency, the total number of elements in the linear array, the radii and feed voltages of the wires, the lengths and spacings of individual elements, and the angular steps at which the specified field pattern is to be computed.

Computer output consists of all input data together with the current distribution of each wire, input impedances corresponding to feed points, and the normalized E-field pattern above earth with the appropriate normalization constant.

Storage required for execution of the analysis program which has been written in Fortran IV is 45.8 k-bytes. Time required by an IBM 370/150 computer for analyzing a linear array consisting of two half-wave wires using 7 expansion functions over each wire was 1.92 and 19.36 s for compilation and execution, respectively.

Acknowledgment
Thanks are due to Dr. Bradley J. Strait for valuable guidance and advice, and to Dr. R. F. Harrington for helpful suggestions.

References

Integration of Two-Dimensional Complex Functions

NAMES: QATR2, QATR3, SIMP2, SIMP3.

PURPOSE: To compute an approximation for the integral of complex valued function \(f(x,y)\), summed over real values of \(x\) and \(y\) from \(x_1\) to \(x_u\) and \(y_1\) to \(y_u\).

DESCRIPTION: The package consists of four integration programs each requiring approximately 3.2 K bytes on an IBM 370/165.

Consider the integral \(J\) of a complex valued function \(f\) of two real variables \((x,y)\)

\[
J = \int_{x_1}^{x_u} \int_{y_1}^{y_u} f(x,y)\, dx\, dy
\]

taken over the rectangular domain

\[
x_1 \leq x \leq x_u, \quad y_1 \leq y \leq y_u.
\]

An approximation to \(J\) may be obtained by recursive application of a one-dimensional rule:

\[
J = \int_{y_1}^{y_u} f(y)\, dy
\]

where \(f(y) = \int_{x_1}^{x_u} f(x,y)\, dx\)

and \(J\) and \(f(y)\) are the outer and inner integral, respectively.

Two one-dimensional rules have been implemented for evaluation of (3) and (4), namely the Simpson and Romberg methods [1]. Both make use of the trapezoidal approximation \(T_{m}^{(0)}\) to the integral calculated by means of a recurrence algorithm [2]. The Romberg extrapolated approximations to the integral are given by

\[
T_{m}^{(m)} = \frac{T_{m}^{(m-1)} - T_{m-1}^{(m-1)}}{4^{m} - 1}, \quad m = 1, 2, \ldots, r
\]

and the successive values of \(T\) are stored in the \(T\)-table shown in Table I. The Simpson method falls out as the special case \(m = 1\) corresponding to the second column in Table I.

Fig. 1(a) shows the hierarchical structure of the computer programs applying the two methods. QATR2 (Romberg) or SIMP2 (Simpson) calculates the outer integral and QATR1 or SIMP1 the inner integral. MAIN and FCT are user-supplied programs of which FCT evaluates the complex function \(f(x,y)\).

The Romberg integration process on the inner and outer integral is stopped whenever

\[
\left| \frac{T_{m}^{(m)} - T_{m-1}^{(m-1)}}{T_{m-1}^{(m-1)}} \right| < \varepsilon, \quad \text{for} \quad m = r, r > 2
\]

TABLE I

<table>
<thead>
<tr>
<th>(r)</th>
<th>Number of Integrant Samples (Z + 1)</th>
<th>Trapezoidal and Extrapolated Approximations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>(T_{r}^{(0)})</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>(T_{r}^{(1)}), (T_{r}^{(1)})</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>(T_{r}^{(2)}), (T_{r}^{(2)}), (T_{r}^{(2)})</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>(T_{r}^{(3)})</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>(T_{r}^{(4)})</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>(T_{r}^{(5)})</td>
</tr>
</tbody>
</table>

Language: Fortran IV.

Authors: H. A. Lessow and H. Schjør-Jacobsen, Electromagnetics Institute, Technical University of Denmark, Lyngby, Denmark.

Availability: ASIS-NAPS Document NAPS 02786.

Manuscript received June 21, 1975.

Acknowledgment
Thanks are due to Dr. Bradley J. Strait for valuable guidance and advice, and to Dr. R. F. Harrington for helpful suggestions.

References
where \(\epsilon \) is a user specified small positive number. The corresponding stop criterion in the Simpson integration is

\[
\frac{T_r^{(1)} - T_{r-1}^{(1)}}{T_{r-1}^{(1)}} < \epsilon, \quad r > 2.
\]

(7)

The programs QATR3 and SIMP3 make use of a two-dimensional trapezoidal algorithm [3] to approximate (1) directly:

\[
T_r^{(0)} = \frac{1}{2} T_{r-1}^{(0)} + \frac{\Delta x \Delta y}{2^r} \left[\frac{1}{2} \sum_j F_j^{b_0} + \sum_k F_k^{in} \right]
\]

\[
T_0^{(0)} = \Delta x \Delta y \frac{1}{4} \sum_{i=1}^{4} F_i^{co}
\]

(8)

where the \(i \)-summation includes the integrand sample points in the four corners of the rectangular integration interval. It is understood from (8) that the \(r \)th trapezoidal approximation \(T_r^{(0)} \) to the integrand is defined by \(T_{r-1}^{(0)} \) and two summations over new sample points not involved in the calculation of \(T_{r-1}^{(0)} \). The new sample points are homogeneously distributed over the integration interval by halving the mesh size (see Fig. 2). In (8) the superscript \(b_0 \) indicates new sample points at the boundary of the integration interval whereas subscript \(i \) indicates interior points. Subsequently (5) is used for the Romberg extrapolations (QATR3) and with \(m = 1 \) for the Simpson method (SIMP3). The convergence criteria used are as defined in (6) and (7). The program structure is shown in Fig. 1(b).

The program listings contain extensive information on input and output parameters. An example is shown in Fig. 3 for QATR2.

The programs described above have been used for the calculation of two-dimensional phase integrals and numerical results are given in [4].

References

