An efficient flexible-order model for coastal and ocean water waves

Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
An efficient flexible-order model for coastal and ocean water waves

Allan P. Engsig-Karup, Harry B. Bingham and Ole Lindberg
Technical University of Denmark, 2800 Lyngby, Denmark
(apek,hbb)@mek.dtu.dk, lindberg.ole@gmail.com

Current work are directed toward the development of an improved numerical 3D model for fully nonlinear potential water waves over arbitrary depths. The model is high-order accurate, robust and efficient for large-scale problems, and support will be included for flexibility in the description of structures. The mathematical equations for potential waves in the physical domain is transformed through σ-mapping(s) to a time-invariant boundary-fitted domain which then becomes a basis for an efficient solution strategy. The improved 3D numerical model is based on a finite difference method as in the original works [3, 1]. The new and improved approach employs a GMRES solver with multigrid preconditioning to achieve optimal scaling of the overall solution effort, i.e., directly with n the total number of grid points. A robust method is achieved through a special treatment of the boundary conditions along solid boundaries, and is necessary for a robust multigrid preconditioning strategy. Full details and other aspects of the 3D solution will appear in [2]. At the symposium, we will present examples demonstrating the fundamental properties of the numerical model together with the latest achievements.

References

∗This work is made possible by the Danish Research Council for Technology and Production grant no. 274-06-0030, with supercomputing resources made available by the Danish Center for Super Computing.
†Now at DHI - Water & Environment, 2970 Horsholm, Denmark