Overview and analysis of the Japanese and US innovation systems

Jofre, Sergio

Publication date: 2008

Citation (APA):
Overview and Analysis of the Japanese and US Innovation Systems

by Sergio Jofre

SUCCES WP1 Meeting
Stockholm June 18 2008
The report was elaborated on the base of a literature review and personal experiences from Japan (Department of Environmental Engineering, Osaka University).

Today’s presentation includes

a) Introduction
b) Comparison of Japanese and US innovation systems from the point of view of the Triple Helix concept based on the Academy-Government-Industry interaction in Japan and the US
c) Main Findings
d) Conclusions for SUCCESS WP1
e) Suggestions for finalizing our contribution
Introduction - 1

There is no single definition of innovation systems when we observe the process at national level.

However, we can understand a National Innovation System (NIS or National System of Innovation) as the flow of technology and information among people, enterprises and institutions which is key to the innovative process on the national level.

According to innovation system theory, innovation and technology development are results of a complex set of relationships among actors in the system, which includes enterprises, universities and government research institutes.
Therefore,
In order to observe the complexity and dynamism of innovation systems a relatively new model has been developed:

The “Triple Helix” model of innovation that captures multiple reciprocal relationships at different points in the process of knowledge capitalization.

Generation of knowledge infrastructure in terms of overlapping institutional spheres, Each sphere takes the role of the other and hybrid and tri-lateral networks emerge at the Interfaces
(most countries moving towards the adoption of this model)
Introduction - 3

Evolutionary Triple Helix model

The overlay of communications and expectations at the network level guides the reconstruction of institutional arrangements over time (system evolution)
Comparison of Japanese and US innovation systems

Current innovation systems in Japan and the US are in a state of transition. The main drivers of this transition are the need to efficiently respond to increased globalization and competitiveness of markets, and the challenge of sustainable development.

Japan:
- Former innovation system based on **“technology substitution for energy”**
- Need for increasing growth with limited resources and energy
- Innovation lead by government and industry
- “In-house” R&D of large companies/tacit knowledge embedded in work and sales forces
- Focus on production efficiency (e.g. the lean production concept) and manufacturing power

US:
- Former innovation system based on **“IT substitution for manufacturing technology”**
- Increasing growth thought developing new functionalities
- Innovation lead by a liberalized arrangement of different innovation agents
- Strong incidence of foreign human resources, mobility and competitiveness
- Focus on new functionality and network synergy (e.g. The silicon Valley)
Findings 1 - Triple Helix in Japan and the US

Government

<table>
<thead>
<tr>
<th>JAPAN</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trends:</td>
<td></td>
</tr>
<tr>
<td>• Undergoing restructuration (less divisions more autonomy and power)</td>
<td>• Dictating and keeping “rules of the game”</td>
</tr>
<tr>
<td>• Design of S&T and R&D policies and strategies (including all national sectors)</td>
<td>• Regulation and Deregulation</td>
</tr>
<tr>
<td>• Encouraging industry-academy collaboration</td>
<td>• Facilitating Innovation Environment</td>
</tr>
<tr>
<td>• Aiming social consensus</td>
<td>• Setting up national priorities</td>
</tr>
<tr>
<td>• Aiming less “interference”</td>
<td>• Aiming more “presence”</td>
</tr>
<tr>
<td>• Increasing funding of R&D</td>
<td>• Aiming more funding to R&D</td>
</tr>
<tr>
<td>Role: High (aiming lower)</td>
<td>Role: Moderate (aiming Higher)</td>
</tr>
</tbody>
</table>
Findings 2 - Triple Helix in Japan and the US University (academia)

<table>
<thead>
<tr>
<th>JAPAN</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trends:</td>
<td>Trends:</td>
</tr>
<tr>
<td>• Undergoing restructuration (from public to</td>
<td>• Liberalized and autonomous</td>
</tr>
<tr>
<td>corporate)</td>
<td>• highly selective and competitive</td>
</tr>
<tr>
<td>• Aiming more liberalization and autonomy</td>
<td>• High business incubation competence</td>
</tr>
<tr>
<td>• Selective and competitive</td>
<td>• High incidence of foreign skills (decreasing</td>
</tr>
<tr>
<td>• Lower incubation business competence</td>
<td>enrolment & recruitment)</td>
</tr>
<tr>
<td>(aiming Higher)</td>
<td>• High rate of external collaboration</td>
</tr>
<tr>
<td>• Lower incidence of foreign skills (aiming</td>
<td>• Variety of funding sources</td>
</tr>
<tr>
<td>higher)</td>
<td>• “In-house” IPR mechanisms</td>
</tr>
<tr>
<td>• Lower rate of external collaboration</td>
<td>• Decreasing scientific production (aiming</td>
</tr>
<tr>
<td>(aiming higher)</td>
<td>higher)</td>
</tr>
<tr>
<td>• Aiming to increase funding variety</td>
<td>Role:</td>
</tr>
<tr>
<td>• “in-house” IPR mechanisms</td>
<td>High (aiming to sustain)</td>
</tr>
<tr>
<td>• Increasing scientific production</td>
<td></td>
</tr>
</tbody>
</table>

Role:
Historically low to Moderate (aiming higher)
Findings 3 - Triple Helix in Japan and the US Industry

Trends:

Japan
- High incidence in Government S&T Policies and Strategies (sustaining)
- Strong “in-house” R&D and High embedded tacit knowledge (sustaining)
- Low mobility and low foreign skills dependency (increasing)
- Long-term and large size networks (sustain or increase)
- Outsourcing Basic Research (increasing)
- Use of “Open Science” and IPR mechanisms (increasing)
- Passive search for external collaboration (aiming higher)
- Low Venture Capital (aiming higher)

US
- Independent & Proactive (sustain/increase)
- Diversify R&D and lower tacit knowledge (decreasing aiming recovery)
- High mobility and foreign skill dependency (decreasing foreign recruitment/aiming recovery)
- Short-term collaboration networks (aiming longer)
- Collaborating in Basic research (sustain)
- IPR mechanisms (sustain)
- Active search for external collaboration (sustaining)
- Venture capital (including Angels)

Role:

Japan
- Historically very High

US
- High
Conclusions for SUCCESS WP1

Japan and the US are undergoing major changes at different organizational levels in order to align their national systems of innovation with globalization and sustainability.

Fundamental changes in both NIS has been inspired on each other history of failure and success. Therefore, there is common path of learning,

NIS in Japan and US are merging (towards the innovation ecosystem)

Results of interaction between academy-government-industry (and hybrid institutions and networks) are incidentals, there is no single formula for success, therefore:

“models of collaboration are less relevant that the benefit implicit in the simple action of collaborating”

“Collaboration at any rate and time increases the possibility to induce synergy, while flexibility and learning capability increases the chance of adaptation”
Suggestions for finalizing contributions to WP1

Regarding our contribution:

• Extending the scope of the analysis to the EU case (Triple Helix)
• Including in the analysis a chapter for “energy policy” in Japan, US and EU

Regarding WP1 in general:

• many of today’s contributions to WP1 relates to innovation system studies – but with slightly different approaches (national innovation systems, technology specific innovation systems, regional innovation systems)

• Therefore, we would like to propose a final review and edition of complementary contributions based on the innovation system approach:
 • Bruggink, Benchmarking EU governance of energy innovation systems
 • Markhorst, Literature review of knowledge transfer, sustainable universities and regional models of innovation
 • Jofre, Overview and analysis of Japanese and US innovation systems
 • partly Ottani & Bou, Innovation networks – concepts and empirical review
Many thanks for your attention.
Linear Model of Innovation

Basic Research → Applied Research → Development → Commercialization

Non-Linear Model of Innovation

Basic Research
- Quest for basic understanding
 - New knowledge
 - Fundamental ideas

Feedback:
- Basic Research needed for discovery
- Search for new ideas & solution to solve longer term issues
- Potential use
 - Application of Knowledge to a specific subject
 - Prototyping

Basic Research
- New unanticipated applications

Feedback:
- Basic Research
- Applies research needed to design new products characteristics
- Market signals / Technical challenge
 - Desired product modification or new characteristics
 - Cost / Design trade-off

Development of products
- Goods & Services
Tri-lateral Collaboration Models

Static model

Nation state encompasses academia and industry and directs the relations between them
Strong form: Soviet
Soft form: Latin America & Norway

“Laissez-faire” (“let do”) model

Institutional spheres with strong borders dividing them and highly circumscribed relations among the spheres
Examples: Sweden & US
Innovation Ecosystem

Inputs
- Knowledge Creation
- Basic and Long-term Researches

Pool of Concept
- Human Networks (CEO, CTO, CMO, CFO)
- Networks of Technologies
- Networks of Funds
- Regional Clusters
- Industry-Academia Collaborations
- IP / Standard
- Regulation / Deregulation

"Interaction Fields"

Outputs
- New Products/Services
- New Markets
- New Social Service

Profit Growth and Welfare

Funding

Human Resources/Education

Public Acceptance