DC grids for integration of large scale wind power

Zeni, Lorenzo; Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

Publication date:
2012

Citation (APA):
DC grids for integration of large scale wind power

Lorenzo Zeni, Poul Sørensen
Nicolaos A. Cutululis
Project DNA

• Technical research project
• Period: 2011 – 2016;
• Budget of 18.5 NOK (2.5 M€), 60% funded by NER
• Education: 4 PhDs
• Annual workshops
• Coordinator DTU Wind Energy, Denmark; 10 partners from Nordic countries
OffshoreDC .dk

Project partners

DTU Wind Energy
Department of Wind Energy

DTU Electrical Engineering
Department of Electrical Engineering

Vestas

DONG energy

ENERGINET.DK

AALBORG UNIVERSITY

CHALMERS

ABB
Power and productivity
for a better world™

SINTEF
NTNU – Trondheim
Norwegian University of
Science and Technology

Statnett

29-03-2012
Overall objective

• to support the development of the VSC based HVDC technology for future large scale offshore grids
• to support a standardized and commercial development of the technology
• to improve the opportunities for the technology to support power system integration of large scale offshore wind power
Offshore wind power development scenarios

Source: Pure Power report, EWEA, July 2011:

2020 Baseline scenario

Total wind power: 230 GW
Offshore: **40 GW**
Electricity consumption: 15.7%

2020 High scenario

Total wind power: 265 GW
Offshore: **55 GW**
Electricity consumption: 18.4%
Offshore wind power development scenarios
Offshore wind power development scenarios

<table>
<thead>
<tr>
<th>Country</th>
<th>MW installed end 2020</th>
<th>MW installed end 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>High</td>
</tr>
<tr>
<td>Belgium</td>
<td>2,156</td>
<td>2,156</td>
</tr>
<tr>
<td>Denmark</td>
<td>2,811</td>
<td>3,211</td>
</tr>
<tr>
<td>Estonia</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Finland</td>
<td>846</td>
<td>1,446</td>
</tr>
<tr>
<td>France</td>
<td>3,275</td>
<td>3,935</td>
</tr>
<tr>
<td>Germany</td>
<td>8,805</td>
<td>12,999</td>
</tr>
<tr>
<td>Ireland</td>
<td>1,155</td>
<td>2,119</td>
</tr>
<tr>
<td>Latvia</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lithuania</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5,298</td>
<td>6,298</td>
</tr>
<tr>
<td>Norway</td>
<td>415</td>
<td>1,020</td>
</tr>
<tr>
<td>Poland</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Russia</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sweden</td>
<td>1,699</td>
<td>3,129</td>
</tr>
<tr>
<td>UK</td>
<td>13,711</td>
<td>19,381</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40,671</td>
<td>56,194</td>
</tr>
</tbody>
</table>
Offshore wind power development scenarios

Base scenario

High scenario

2020

2030

29-03-2012
Offshore grid scenarios

- The simplest Tradewind case with separate interconnectors and offshore wind plant connections
- EWEA 2030 offshore grid vision (Jacopo Moccia Nov 2010)
Work flow

• **Technology**
 – Component transients and protection (DTU Elektro)
 – DC resonances in MT-HVDC grids – Converter Interactions (Chalmers/ABB)

• **Grid topologies**
 – Grid operation and control
 – Power system and security analysis (NTNU/SINTEF)

• **Clustering of wind power** (DTU Wind Energy/Vestas)

• **Feasibility studies** (VTT)
OffshoreDC .dk

Work flow

• Technology
 – Component transients and protection (DTU Elektro)
 – DC resonances in MT-HVDC grids – Converter Interactions (Chalmers/ABB)

• Grid topologies
 – Grid operation and control
 – Power system and security analysis (NTNU/SINTEF)

• Clustering of wind power (DTU Wind Energy/Vestas)

• Feasibility studies (VTT)
Grid topologies

- P2P + interconnectors
- Mature technology
- Simple control
- No regulatory problems
- No need for DC breakers
- Not optimal for large scale wind power
Grid topologies

- Wind connected to interconnectors
- Adds flexibility to the system
- Could work without DC breakers
- Better use of transmission capacity
- Regulatory problems
Grid topologies

- Meshed grid
- Integrates markets and wind across areas
- Allows sharing of reserves
- DC breakers necessary
- Sophisticated control
- Regulatory problems
Work flow

• **Technology**
 – Component transients and protection (DTU Elektro)
 – Converters (Chalmers/ABB)

• **Grid topologies**
 – Grid operation and control
 – Power system and security analysis (NTNU/SINTEF)

• **Clustering of wind power** (Risø DTU/Vestas)

• **Feasibility studies** (VTT)
Control

Temesgen Haileselassie, NTNU

OffshoreDC .dk
Temesgen Haileselassie, NTNU

Control

a. DC bus power controller

\[P^* + \rightarrow PI \rightarrow i_d^* \rightarrow P \]

b. DC voltage regulator

\[U^* + \rightarrow PI \rightarrow i_d^* \rightarrow U \]

c. DC voltage droop controller

\[U^* \rightarrow R \rightarrow U \]

\[U \rightarrow PI \rightarrow e \rightarrow PI \]

\[P^* + \rightarrow e \rightarrow P \]

\[U^* + \rightarrow e \rightarrow U \]

\[slope = -1/R \]
Ancillary services

DC systems

Active power \rightarrow Frequency
Reactive power \rightarrow Voltage
Ancillary services

Primary frequency control

DC voltage droop
+ frequency droop
Ancillary services

Offshore load (Oil/gas platform)

Scotland

Nordic Area

England

Central Europe

All cable resistances: $r=0.01 \Omega/km$
All cable capacitances: $c=5 \mu F/km$
Bipolar DC transmission for all cases

$P_{c1}^{\text{max}}=450 \text{ MW}$
$\rho_{DC1}=0.04$

$l_{14}=500 \text{ km}$

$l_{12}=300 \text{ km}$

$P_{c2}^{\text{max}}=800 \text{ MW}$
$\rho_{DC2}=0.04$

$l_{26}=120 \text{ km}$

$l_{2}=800 \text{ km}$

$l_{34}=700 \text{ km}$

$l_{3}=600 \text{ km}$

$P_{c3}^{\text{max}}=750 \text{ MW}$
$\rho_{DC3}=0.04$

$P_{c5}^{\text{max}}=250 \text{ MW}$
$\rho_{DC5}=0.04$

$P_{c6}^{\text{max}}=600 \text{ MW}$

Offshore windfarm

Offshore windfarm

Offshore load

Offshore windfarm
Ancillary services

Grid Frequency (pu) vs Time (s)

- AC Grid-1
- AC Grid-2
- AC Grid-3
- AC Grid-4

Grid Frequency (pu)

Time (s)
Work flow

• Technology
 – Component transients and protection (DTU Elektro)
 – Converters (Chalmers/ABB)

• Grid topologies
 – Grid operation and control
 – Power system and security analysis (NTNU/SINTEF)

• Clustering of wind power (Risø DTU/Vestas)

• Feasibility studies (VTT)
Wind clustering

• Definition and specification of cases
 – Topologies
 • HVDC grid
 • Wind power plant
 – Control system architecture (from power system to turbine)
 • Hierarchy
 • Allocation of control tasks
 • Communication protocol
Development of control strategy

• Control tasks
 – Dispatch / power balancing tasks
 • Ancillary services of wind power plants to DC grid
 – Primary and secondary DC voltage control
 • Coordinated ancillary services of cluster to AC grid connection points
 – Primary and secondary frequency control
 – Primary and secondary AC voltage control
 • Utilisation of cluster smoothing effect
 – Reduce wind power forecast errors/fluctuations
 • Congestion management
 – Protection
 – Backup control
Reduction of wind power forecast errors
Summary

- Offshore grid is technically feasible
- Offshore grid likely to develop in modular steps from national developments
- Coordination of load flows requires sophisticated control methods
- Offshore grid can deliver ancillary services to onshore AC grids
- Control and protection of offshore grids is a challenge
Thank you!

OffshoreDC Workshop,
2 October 2012 - ABB, Västerås, Sweden

Contact:
Nicolaos A. Cutululis
niac@dtu.dk

www.offshoredc.dk