Control challenges for grid integration

Nicolaos A. Cutululis, DTU Wind Energy
17 January 2019, DeepWind Conference, Trondheim
• Background
• Diode Rectifier as offshore HVDC
• Grid Forming Wind Turbines
• Offshore AC Grid Start-up
• Black Start by Offshore Wind Turbines

Acknowledgements:
Ramón Blasco Jiménez & team, UPV
Lie Xu & team, UoS
Ömer Göksu & Oscar Saborío-Romano, DTU
Control challenges for grid integration

Offshore wind development

Offshore wind capacity set to reach 520 GW by 2050

- Could raise offshore wind to 4% of global power generation by 2050
- Average new turbine capacity set to reach 8.3 MW by 2022 – up 184% since 2010
- Next-gen turbines offer longer blades and higher output
Control challenges for grid integration

Offshore wind development

Figure 1: Global levelised cost of electricity from offshore wind farms by year of commissioning, 2010-2021

Source: IRENA, 2018a.
Control challenges for grid integration

Offshore wind development

Main cost components of offshore wind farms:
- turbines (including towers)
- the foundations
- the grid connection to shore
 - AC or DC?

Power flow is in one direction only
Why not use a diode rectifier offshore?

Source: IRENA, Offshore innovation widens renewable energy options, September 2018

Source figure: ABB, [online](http://www.abb.com)
Control challenges for grid integration

PROMOTioN project
Progress on Meshed HVDC Offshore Transmission Networks
Control challenges for grid integration

Objectives

Objective 1
Define functional requirements to OWFs

Objective 2
Develop test cases & control algorithms

Objective 3
Define & apply compliance evaluation

Objective 4
Recommend grid code requirements

Voltage [%]

<table>
<thead>
<tr>
<th>Time [s]</th>
<th>0%</th>
<th>100%</th>
<th>110%</th>
<th>120%</th>
<th>130%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deliverable 3.8
List of requirement recommendations to adapt and extend existing grid codes
Control challenges for grid integration

Diode Rectifier Units as offshore HVDC

Key features of the Modular Diode Rectifier Unit:
- Encapsulated, rugged equipment
- Bis degradation and flame retardant insulation
- Simple and robust power electronics
- Small platform with easy transport and installation
- High reliability, minimal maintenance
- Via offshore DC converter as single point of failure
- Flexible offshore installation options due to modular rectifier concept

Trondheim 17.01.2019
Control challenges for grid integration

Grid Forming Wind Turbines

Grid forming wind turbines control
- dq current control based
- voltage/angle control based
 - VSM control
- GPS synchronization based
 - master/slave based
Control challenges for grid integration

Offshore AC Grid Start-up Options

- Umbilical AC Cable
- Nearby VSC-HVDC (or AC)
- Local Energy Storage (e.g. battery, diesel)
- Black-startable wind turbines

VSC-MMC onshore

Energy Storage

DRUs

HVDC link

© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 691714.

© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 691714.

Onshore AC Grid

DRUs

HVDC link

VSC-MMC onshore
Control challenges for grid integration

Some results – AC grid start-up (string connection)
Control challenges for grid integration

Some results – Frequency control

Figure 3-12: Case 12 – OWF’s response to an onshore under-frequency event ($t = 0.5s$) at high wind speed – Reserves: 10% – Overloading released at $t = 13s$. CBase: $\dot{P} = P^*$, CP: $\dot{P} = P^* + \Delta P_{FPR}$, CF: $\dot{P} = P^* + \Delta P_{FPR}$, CPFE-MPPT: $\dot{P} = P_{MPPT} + \Delta P_{FPR} + \Delta P_{FPR}$, CPFI: $\dot{P} = P_{MPPT} + \Delta P_{FPR} + \Delta P_{FPR}$, CPFE-Ref: $\dot{P} = P^* + \Delta P_{FPR} + \Delta P_{FPR}$.
Control challenges for grid integration

Black-start - Progress Towards Demonstration

Outside PROMOTioN
Energinet performs Black Start field test with Skagerrak 4 (SK4) HVDC interconnector

WP3 Performs Black Start Simulation Test with Offshore WPP

To energize:
- 3 buses
- Overheadline & underground cable
- Shunt reactor & transformer
- Step MW++ load
 - Load changes
 - Frequency & voltage setpoint changes
 - Load disconnection

Results to be compared against HVDC field tests by Energinet

[https://ens.dk/sites/ens.dk/files/Statistik/el_produktion_og_transmission_2017_300dpi.pdf]
Control challenges for grid integration

Scenarios – Self-Energization & Black Start

HVAC-connected OWPP

HVDC-connected OWPP(s) with AC collector substation(s)

HVDC-connected OWPP(s) directly (66kV) connected to the HVDC

© PROMOTION – Progress on Meshed HVDC Offshore Transmission Networks
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 691714.
Control challenges for grid integration

Some results – black-start
Control challenges for grid integration

Some results – black-start

![Graphs showing voltage and current over time for black-start analysis.](image)
Control challenges for grid integration

Models for Control of WT/WPP Connected to DR-HVDC

Confidential - only for members of the consortium

- Aggregated single WT
- Ideal onshore DC voltage
- Ideal WT DC voltage

- Offshore AC start-up
- Voltage & frequency control
- Active power setpoint control
- Offshore AC fault ride-through
- Intentional islanded operation
Control challenges for grid integration

Achievements

- **Control and Modelling**
 - Novel grid forming wind turbine controls
 - Confidential grid forming WPP simulation models
 - Academic (white-box) & Industrial (black-box)

- **Operation of DRU HVDC Systems**
 - Functional requirements for Diode-Rectifier (DRU) connection of Wind Power Plants
 - Control algorithms and simulation test cases & results
 - Proof of DRU concept via simulations
Control challenges for grid integration

Main Findings and Challenges

Operation of DRUs

- Wind turbines can operate with DRU-connection without any degradation compared to VSC
- Wind turbines can operate as islanded (idling, self-sustaining)

Fault Handling in DRU-connected OWPP

- DRU inherent response to DC link voltage eases onshore AC fault ride-through

Ancillary Services by DRU-connected OWPP

- DRU connected OWPP can contribute to frequency support and oscillation damping

OWPP Self-energization and Black Start

- OWPP can energize its AC network and might be able to contribute to black start
Any Questions?